Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -4,10 +4,13 @@ import json
|
|
| 4 |
import logging
|
| 5 |
import warnings
|
| 6 |
from pathlib import Path
|
| 7 |
-
from typing import List, Dict, Any, Optional
|
| 8 |
import hashlib
|
| 9 |
import pickle
|
| 10 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Suppress warnings for cleaner output
|
| 13 |
warnings.filterwarnings("ignore")
|
|
@@ -22,15 +25,16 @@ import torch
|
|
| 22 |
from transformers import (
|
| 23 |
AutoTokenizer,
|
| 24 |
AutoModelForCausalLM,
|
| 25 |
-
BitsAndBytesConfig
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
-
|
| 29 |
# Document processing
|
| 30 |
-
from llama_index.core import Document, VectorStoreIndex,
|
| 31 |
from llama_index.core.node_parser import SentenceSplitter
|
| 32 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
| 33 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
|
| 34 |
|
| 35 |
# PDF processing
|
| 36 |
import PyPDF2
|
|
@@ -39,9 +43,6 @@ from io import BytesIO
|
|
| 39 |
# Medical knowledge validation
|
| 40 |
import re
|
| 41 |
|
| 42 |
-
|
| 43 |
-
#STORAGE
|
| 44 |
-
|
| 45 |
# Configure logging
|
| 46 |
logging.basicConfig(
|
| 47 |
level=logging.INFO,
|
|
@@ -50,7 +51,7 @@ logging.basicConfig(
|
|
| 50 |
logger = logging.getLogger(__name__)
|
| 51 |
|
| 52 |
class MedicalFactChecker:
|
| 53 |
-
"""
|
| 54 |
|
| 55 |
def __init__(self):
|
| 56 |
self.medical_facts = self._load_medical_facts()
|
|
@@ -67,15 +68,33 @@ class MedicalFactChecker:
|
|
| 67 |
]
|
| 68 |
|
| 69 |
def _load_medical_facts(self) -> Dict[str, Any]:
|
| 70 |
-
"""Pre-loaded medical facts"""
|
| 71 |
return {
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
}
|
| 74 |
|
| 75 |
def _load_contraindications(self) -> Dict[str, List[str]]:
|
| 76 |
-
"""Pre-loaded contraindications"""
|
| 77 |
return {
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
| 79 |
}
|
| 80 |
|
| 81 |
def _compile_dosage_patterns(self) -> List[re.Pattern]:
|
|
@@ -91,31 +110,38 @@ class MedicalFactChecker:
|
|
| 91 |
return [re.compile(pattern, re.IGNORECASE) for pattern in patterns]
|
| 92 |
|
| 93 |
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]:
|
| 94 |
-
"""
|
| 95 |
issues = []
|
| 96 |
warnings = []
|
| 97 |
accuracy_score = 0.0
|
| 98 |
|
| 99 |
# Check for contraindications (faster keyword matching)
|
| 100 |
response_lower = response.lower()
|
| 101 |
-
for contra_list in self.contraindications.
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
# Context alignment using Jaccard similarity
|
| 109 |
if context:
|
| 110 |
resp_words = set(response_lower.split())
|
| 111 |
ctx_words = set(context.lower().split())
|
| 112 |
context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0
|
| 113 |
-
if context_similarity < 0.
|
| 114 |
warnings.append(f"Low context similarity: {context_similarity:.2f}")
|
| 115 |
-
accuracy_score -= 0.
|
| 116 |
else:
|
| 117 |
context_similarity = 0.0
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
# Unsupported claims check
|
| 120 |
for pattern in self.definitive_patterns:
|
| 121 |
if pattern.search(response):
|
|
@@ -137,14 +163,11 @@ class MedicalFactChecker:
|
|
| 137 |
"issues": issues,
|
| 138 |
"warnings": warnings,
|
| 139 |
"context_similarity": context_similarity,
|
| 140 |
-
"is_safe": len(issues) == 0 and confidence_score > 0.
|
| 141 |
}
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
from llama_index.core import Settings # Add this import at the top
|
| 146 |
-
class GazaKnowledgeBase:
|
| 147 |
-
"""Optimized knowledge base for offline operation"""
|
| 148 |
|
| 149 |
def __init__(self, data_dir: str = "./data"):
|
| 150 |
self.data_dir = Path(data_dir)
|
|
@@ -152,33 +175,47 @@ class GazaKnowledgeBase:
|
|
| 152 |
self.vector_store = None
|
| 153 |
self.index = None
|
| 154 |
self.chunk_metadata = []
|
| 155 |
-
self.index_path = self.data_dir / "
|
| 156 |
|
| 157 |
-
#
|
| 158 |
self.medical_priorities = {
|
| 159 |
-
"trauma": ["gunshot", "blast", "burns?", "fracture"],
|
| 160 |
-
"infectious": ["cholera", "dysentery", "infection"],
|
| 161 |
-
"chronic": ["diabetes", "hypertension", "malnutrition"],
|
| 162 |
-
"emergency": ["cardiac", "bleeding", "airway"]
|
|
|
|
| 163 |
}
|
| 164 |
|
| 165 |
def initialize(self):
|
| 166 |
-
"""
|
| 167 |
if not self.index_path.exists():
|
| 168 |
self.index_path.mkdir(parents=True)
|
| 169 |
|
| 170 |
-
#
|
| 171 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
# Configure global settings
|
| 179 |
Settings.embed_model = self.embedding_model
|
| 180 |
-
Settings.chunk_size =
|
| 181 |
-
Settings.chunk_overlap =
|
| 182 |
|
| 183 |
# Check for existing index
|
| 184 |
if (self.index_path / "index.faiss").exists() and (self.index_path / "docstore.json").exists():
|
|
@@ -187,13 +224,13 @@ class GazaKnowledgeBase:
|
|
| 187 |
self._create_vector_store()
|
| 188 |
|
| 189 |
def _load_vector_store(self):
|
| 190 |
-
"""Load existing vector store"""
|
| 191 |
try:
|
| 192 |
# Load the FAISS index directly
|
| 193 |
faiss_index = faiss.read_index(str(self.index_path / "index.faiss"))
|
| 194 |
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
| 195 |
|
| 196 |
-
# Create storage context
|
| 197 |
storage_context = StorageContext.from_defaults(
|
| 198 |
vector_store=vector_store,
|
| 199 |
persist_dir=str(self.index_path)
|
|
@@ -205,23 +242,51 @@ class GazaKnowledgeBase:
|
|
| 205 |
)
|
| 206 |
|
| 207 |
# Load metadata
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
| 210 |
|
| 211 |
-
logger.info("Loaded existing vector store")
|
| 212 |
except Exception as e:
|
| 213 |
logger.error(f"Error loading vector store: {e}")
|
| 214 |
# Fallback to creating new store if loading fails
|
| 215 |
self._create_vector_store()
|
| 216 |
|
| 217 |
-
|
| 218 |
def _create_vector_store(self):
|
| 219 |
-
"""Create
|
| 220 |
documents = self._load_documents()
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
| 226 |
|
| 227 |
# Create storage context
|
|
@@ -229,30 +294,38 @@ class GazaKnowledgeBase:
|
|
| 229 |
vector_store=vector_store
|
| 230 |
)
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
# Persist the index
|
| 258 |
self.index.storage_context.persist(persist_dir=str(self.index_path))
|
|
@@ -261,11 +334,10 @@ class GazaKnowledgeBase:
|
|
| 261 |
with open(self.index_path / "metadata.pkl", 'wb') as f:
|
| 262 |
pickle.dump(self.chunk_metadata, f)
|
| 263 |
|
| 264 |
-
logger.info(f"Created vector store with {len(self.chunk_metadata)} chunks")
|
| 265 |
|
| 266 |
-
|
| 267 |
def _load_documents(self) -> List[Document]:
|
| 268 |
-
"""
|
| 269 |
documents = []
|
| 270 |
doc_cache = self.index_path / "document_cache.pkl"
|
| 271 |
|
|
@@ -273,333 +345,1062 @@ class GazaKnowledgeBase:
|
|
| 273 |
if doc_cache.exists():
|
| 274 |
try:
|
| 275 |
with open(doc_cache, 'rb') as f:
|
| 276 |
-
|
| 277 |
-
if isinstance(
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
| 279 |
logger.warning("Document cache format invalid")
|
| 280 |
except Exception as e:
|
| 281 |
logger.warning(f"Document cache corrupted: {e}")
|
| 282 |
|
| 283 |
-
# Process files
|
|
|
|
| 284 |
for pdf_file in self.data_dir.glob("*.pdf"):
|
| 285 |
try:
|
| 286 |
doc_text = self._extract_pdf_text(pdf_file)
|
| 287 |
-
if doc_text:
|
| 288 |
documents.append(Document(
|
| 289 |
text=doc_text,
|
| 290 |
-
metadata={
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
))
|
|
|
|
|
|
|
| 292 |
except Exception as e:
|
| 293 |
logger.error(f"Error loading {pdf_file}: {e}")
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
# Save to cache if we found documents
|
| 296 |
if documents:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
with open(doc_cache, 'wb') as f:
|
| 298 |
-
pickle.dump(
|
|
|
|
| 299 |
|
| 300 |
return documents
|
| 301 |
|
| 302 |
def _extract_pdf_text(self, pdf_path: Path) -> str:
|
| 303 |
-
"""
|
| 304 |
try:
|
| 305 |
with open(pdf_path, 'rb') as file:
|
| 306 |
pdf_reader = PyPDF2.PdfReader(file)
|
| 307 |
text = []
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
except Exception as e:
|
| 314 |
logger.error(f"Error extracting text from {pdf_path}: {e}")
|
| 315 |
return ""
|
| 316 |
|
| 317 |
-
def search(self, query: str, k: int =
|
| 318 |
-
"""
|
| 319 |
if not self.index:
|
|
|
|
| 320 |
return []
|
| 321 |
|
| 322 |
try:
|
| 323 |
retriever = self.index.as_retriever(similarity_top_k=k)
|
| 324 |
results = retriever.retrieve(query)
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
except Exception as e:
|
| 333 |
logger.error(f"Error during search: {e}")
|
| 334 |
return []
|
| 335 |
|
| 336 |
def _assess_priority(self, text: str) -> str:
|
| 337 |
-
"""
|
| 338 |
text_lower = text.lower()
|
| 339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
if any(re.search(keyword, text_lower) for keyword in keywords):
|
| 341 |
return priority
|
|
|
|
| 342 |
return "general"
|
| 343 |
-
|
| 344 |
-
|
|
|
|
| 345 |
|
| 346 |
def __init__(self):
|
| 347 |
-
self.knowledge_base =
|
| 348 |
self.fact_checker = MedicalFactChecker()
|
| 349 |
self.llm = None
|
| 350 |
self.tokenizer = None
|
| 351 |
self.system_prompt = self._create_system_prompt()
|
| 352 |
self.generation_pipeline = None
|
| 353 |
-
|
|
|
|
|
|
|
| 354 |
def initialize(self):
|
| 355 |
-
"""
|
| 356 |
-
logger.info("Initializing Gaza RAG System...")
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
# Lazy LLM loading - will load on first request
|
| 360 |
logger.info("RAG system ready (LLM will load on first request)")
|
| 361 |
|
| 362 |
def _initialize_llm(self):
|
| 363 |
-
"""
|
| 364 |
if self.llm is not None:
|
| 365 |
return
|
| 366 |
|
| 367 |
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
| 368 |
try:
|
|
|
|
|
|
|
|
|
|
| 369 |
quantization_config = BitsAndBytesConfig(
|
| 370 |
load_in_4bit=True,
|
| 371 |
bnb_4bit_compute_dtype=torch.float16,
|
| 372 |
bnb_4bit_use_double_quant=True,
|
| 373 |
-
bnb_4bit_quant_type="nf4"
|
|
|
|
| 374 |
)
|
| 375 |
|
| 376 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 377 |
model_name,
|
| 378 |
-
trust_remote_code=True
|
|
|
|
| 379 |
)
|
| 380 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
self.llm = AutoModelForCausalLM.from_pretrained(
|
| 382 |
model_name,
|
| 383 |
quantization_config=quantization_config,
|
| 384 |
device_map="auto",
|
| 385 |
trust_remote_code=True,
|
| 386 |
-
torch_dtype=torch.float16
|
|
|
|
| 387 |
)
|
| 388 |
|
| 389 |
-
# Create pipeline
|
| 390 |
self.generation_pipeline = pipeline(
|
| 391 |
"text-generation",
|
| 392 |
model=self.llm,
|
| 393 |
tokenizer=self.tokenizer,
|
| 394 |
-
|
| 395 |
-
torch_dtype=torch.float16
|
|
|
|
| 396 |
)
|
| 397 |
|
|
|
|
|
|
|
| 398 |
except Exception as e:
|
| 399 |
-
logger.error(f"Error loading model: {e}")
|
| 400 |
self._initialize_fallback_llm()
|
| 401 |
|
| 402 |
def _initialize_fallback_llm(self):
|
| 403 |
-
"""
|
| 404 |
try:
|
| 405 |
-
|
|
|
|
|
|
|
|
|
|
| 406 |
self.llm = AutoModelForCausalLM.from_pretrained(
|
| 407 |
-
|
| 408 |
-
torch_dtype=torch.float32
|
|
|
|
| 409 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
self.generation_pipeline = pipeline(
|
| 411 |
"text-generation",
|
| 412 |
model=self.llm,
|
| 413 |
-
tokenizer=self.tokenizer
|
|
|
|
| 414 |
)
|
|
|
|
|
|
|
|
|
|
| 415 |
except Exception as e:
|
| 416 |
logger.error(f"Fallback model failed: {e}")
|
| 417 |
self.llm = None
|
|
|
|
| 418 |
|
| 419 |
def _create_system_prompt(self) -> str:
|
| 420 |
-
"""
|
| 421 |
-
return
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
|
| 426 |
-
def
|
| 427 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
try:
|
|
|
|
|
|
|
|
|
|
| 429 |
# Initialize LLM only when needed
|
| 430 |
if self.llm is None:
|
| 431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
|
| 433 |
-
#
|
| 434 |
-
search_results =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
context = self._prepare_context(search_results)
|
| 436 |
|
|
|
|
|
|
|
|
|
|
| 437 |
# Generate response
|
| 438 |
-
response =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
-
#
|
| 441 |
safety_check = self.fact_checker.check_medical_accuracy(response, context)
|
| 442 |
|
| 443 |
-
|
|
|
|
| 444 |
response,
|
| 445 |
search_results,
|
| 446 |
-
safety_check
|
|
|
|
| 447 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
except Exception as e:
|
| 449 |
-
logger.error(f"Error: {e}")
|
| 450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
|
| 452 |
def _prepare_context(self, search_results: List[Dict[str, Any]]) -> str:
|
| 453 |
-
"""
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
|
| 459 |
def _generate_response(self, query: str, context: str) -> str:
|
| 460 |
-
"""
|
| 461 |
if not self.generation_pipeline:
|
| 462 |
return self._generate_fallback_response(query, context)
|
| 463 |
|
| 464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
|
| 466 |
try:
|
|
|
|
| 467 |
response = self.generation_pipeline(
|
| 468 |
prompt,
|
| 469 |
-
max_new_tokens=
|
| 470 |
-
temperature=0.
|
| 471 |
do_sample=True,
|
| 472 |
pad_token_id=self.tokenizer.eos_token_id,
|
| 473 |
-
repetition_penalty=1.
|
| 474 |
-
truncation=True
|
| 475 |
-
|
|
|
|
| 476 |
|
| 477 |
-
|
| 478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
return self._generate_fallback_response(query, context)
|
| 480 |
|
| 481 |
def _generate_fallback_response(self, query: str, context: str) -> str:
|
| 482 |
-
"""
|
| 483 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 484 |
|
| 485 |
def _prepare_final_response(
|
| 486 |
self,
|
| 487 |
response: str,
|
| 488 |
search_results: List[Dict[str, Any]],
|
| 489 |
-
safety_check: Dict[str, Any]
|
|
|
|
| 490 |
) -> Dict[str, Any]:
|
| 491 |
-
"""
|
|
|
|
|
|
|
| 492 |
if not safety_check["is_safe"]:
|
| 493 |
-
response = f"β οΈ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
|
| 495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
|
| 497 |
return {
|
| 498 |
"response": response,
|
| 499 |
-
"confidence":
|
| 500 |
"sources": sources,
|
| 501 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
}
|
| 503 |
|
| 504 |
-
def _create_error_response(self) -> Dict[str, Any]:
|
| 505 |
-
"""
|
| 506 |
return {
|
| 507 |
-
"response": "System
|
| 508 |
"confidence": 0.0,
|
| 509 |
"sources": [],
|
| 510 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
}
|
| 512 |
|
| 513 |
# Global system instance
|
| 514 |
-
|
| 515 |
|
| 516 |
-
def
|
| 517 |
-
"""Initialize system with
|
| 518 |
-
global
|
| 519 |
-
if
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
|
| 524 |
-
def
|
| 525 |
-
"""
|
| 526 |
if not query.strip():
|
| 527 |
-
return "Please enter a medical question."
|
| 528 |
|
| 529 |
try:
|
| 530 |
-
system
|
| 531 |
-
|
| 532 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 533 |
except Exception as e:
|
| 534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
|
| 536 |
-
def
|
| 537 |
-
"""Create
|
|
|
|
|
|
|
| 538 |
css = """
|
| 539 |
-
.
|
| 540 |
-
|
| 541 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
"""
|
| 543 |
|
| 544 |
-
with gr.Blocks(
|
| 545 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 579 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 580 |
submit_btn.click(
|
| 581 |
-
|
| 582 |
inputs=query_input,
|
| 583 |
-
outputs=response_output
|
|
|
|
| 584 |
)
|
|
|
|
| 585 |
query_input.submit(
|
| 586 |
-
|
| 587 |
inputs=query_input,
|
| 588 |
-
outputs=response_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 589 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
|
| 591 |
return interface
|
| 592 |
|
| 593 |
def main():
|
| 594 |
-
"""
|
| 595 |
-
logger.info("Starting
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 603 |
|
| 604 |
if __name__ == "__main__":
|
| 605 |
-
main()
|
|
|
|
|
|
| 4 |
import logging
|
| 5 |
import warnings
|
| 6 |
from pathlib import Path
|
| 7 |
+
from typing import List, Dict, Any, Optional, Tuple
|
| 8 |
import hashlib
|
| 9 |
import pickle
|
| 10 |
from datetime import datetime
|
| 11 |
+
import time
|
| 12 |
+
import asyncio
|
| 13 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 14 |
|
| 15 |
# Suppress warnings for cleaner output
|
| 16 |
warnings.filterwarnings("ignore")
|
|
|
|
| 25 |
from transformers import (
|
| 26 |
AutoTokenizer,
|
| 27 |
AutoModelForCausalLM,
|
| 28 |
+
BitsAndBytesConfig,
|
| 29 |
+
pipeline
|
| 30 |
)
|
| 31 |
|
|
|
|
| 32 |
# Document processing
|
| 33 |
+
from llama_index.core import Document, VectorStoreIndex, Settings
|
| 34 |
from llama_index.core.node_parser import SentenceSplitter
|
| 35 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
| 36 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 37 |
+
from llama_index.core import StorageContext
|
| 38 |
|
| 39 |
# PDF processing
|
| 40 |
import PyPDF2
|
|
|
|
| 43 |
# Medical knowledge validation
|
| 44 |
import re
|
| 45 |
|
|
|
|
|
|
|
|
|
|
| 46 |
# Configure logging
|
| 47 |
logging.basicConfig(
|
| 48 |
level=logging.INFO,
|
|
|
|
| 51 |
logger = logging.getLogger(__name__)
|
| 52 |
|
| 53 |
class MedicalFactChecker:
|
| 54 |
+
"""Enhanced medical fact checker with faster validation"""
|
| 55 |
|
| 56 |
def __init__(self):
|
| 57 |
self.medical_facts = self._load_medical_facts()
|
|
|
|
| 68 |
]
|
| 69 |
|
| 70 |
def _load_medical_facts(self) -> Dict[str, Any]:
|
| 71 |
+
"""Pre-loaded medical facts for Gaza context"""
|
| 72 |
return {
|
| 73 |
+
"burn_treatment": {
|
| 74 |
+
"cool_water": "Use clean, cool (not ice-cold) water for 10-20 minutes",
|
| 75 |
+
"no_ice": "Never apply ice directly to burns",
|
| 76 |
+
"clean_cloth": "Cover with clean, dry cloth if available"
|
| 77 |
+
},
|
| 78 |
+
"wound_care": {
|
| 79 |
+
"pressure": "Apply direct pressure to control bleeding",
|
| 80 |
+
"elevation": "Elevate injured limb if possible",
|
| 81 |
+
"clean_hands": "Clean hands before treating wounds when possible"
|
| 82 |
+
},
|
| 83 |
+
"infection_signs": {
|
| 84 |
+
"redness": "Increasing redness around wound",
|
| 85 |
+
"warmth": "Increased warmth at wound site",
|
| 86 |
+
"pus": "Yellow or green discharge",
|
| 87 |
+
"fever": "Fever may indicate systemic infection"
|
| 88 |
+
}
|
| 89 |
}
|
| 90 |
|
| 91 |
def _load_contraindications(self) -> Dict[str, List[str]]:
|
| 92 |
+
"""Pre-loaded contraindications for common treatments"""
|
| 93 |
return {
|
| 94 |
+
"aspirin": ["children under 16", "bleeding disorders", "stomach ulcers"],
|
| 95 |
+
"ibuprofen": ["kidney disease", "heart failure", "stomach bleeding"],
|
| 96 |
+
"hydrogen_peroxide": ["deep wounds", "closed wounds", "eyes"],
|
| 97 |
+
"tourniquets": ["non-life-threatening bleeding", "without proper training"]
|
| 98 |
}
|
| 99 |
|
| 100 |
def _compile_dosage_patterns(self) -> List[re.Pattern]:
|
|
|
|
| 110 |
return [re.compile(pattern, re.IGNORECASE) for pattern in patterns]
|
| 111 |
|
| 112 |
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]:
|
| 113 |
+
"""Enhanced medical accuracy check with Gaza-specific considerations"""
|
| 114 |
issues = []
|
| 115 |
warnings = []
|
| 116 |
accuracy_score = 0.0
|
| 117 |
|
| 118 |
# Check for contraindications (faster keyword matching)
|
| 119 |
response_lower = response.lower()
|
| 120 |
+
for medication, contra_list in self.contraindications.items():
|
| 121 |
+
if medication in response_lower:
|
| 122 |
+
for contra in contra_list:
|
| 123 |
+
if any(word in response_lower for word in contra.split()):
|
| 124 |
+
issues.append(f"Potential contraindication: {medication} with {contra}")
|
| 125 |
+
accuracy_score -= 0.3
|
| 126 |
+
break
|
| 127 |
|
| 128 |
# Context alignment using Jaccard similarity
|
| 129 |
if context:
|
| 130 |
resp_words = set(response_lower.split())
|
| 131 |
ctx_words = set(context.lower().split())
|
| 132 |
context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0
|
| 133 |
+
if context_similarity < 0.5: # Lowered threshold for Gaza context
|
| 134 |
warnings.append(f"Low context similarity: {context_similarity:.2f}")
|
| 135 |
+
accuracy_score -= 0.1
|
| 136 |
else:
|
| 137 |
context_similarity = 0.0
|
| 138 |
|
| 139 |
+
# Gaza-specific resource checks
|
| 140 |
+
gaza_resources = ["clean water", "sterile", "hospital", "ambulance", "electricity"]
|
| 141 |
+
if any(resource in response_lower for resource in gaza_resources):
|
| 142 |
+
warnings.append("Consider resource limitations in Gaza context")
|
| 143 |
+
accuracy_score -= 0.05
|
| 144 |
+
|
| 145 |
# Unsupported claims check
|
| 146 |
for pattern in self.definitive_patterns:
|
| 147 |
if pattern.search(response):
|
|
|
|
| 163 |
"issues": issues,
|
| 164 |
"warnings": warnings,
|
| 165 |
"context_similarity": context_similarity,
|
| 166 |
+
"is_safe": len(issues) == 0 and confidence_score > 0.5
|
| 167 |
}
|
| 168 |
|
| 169 |
+
class EnhancedGazaKnowledgeBase:
|
| 170 |
+
"""Enhanced knowledge base with better embeddings and indexing"""
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
def __init__(self, data_dir: str = "./data"):
|
| 173 |
self.data_dir = Path(data_dir)
|
|
|
|
| 175 |
self.vector_store = None
|
| 176 |
self.index = None
|
| 177 |
self.chunk_metadata = []
|
| 178 |
+
self.index_path = self.data_dir / "enhanced_vector_store"
|
| 179 |
|
| 180 |
+
# Enhanced medical priorities for Gaza context
|
| 181 |
self.medical_priorities = {
|
| 182 |
+
"trauma": ["gunshot", "blast", "burns?", "fracture", "shrapnel", "explosion"],
|
| 183 |
+
"infectious": ["cholera", "dysentery", "infection", "sepsis", "wound infection"],
|
| 184 |
+
"chronic": ["diabetes", "hypertension", "malnutrition", "kidney", "heart"],
|
| 185 |
+
"emergency": ["cardiac", "bleeding", "airway", "unconscious", "shock"],
|
| 186 |
+
"gaza_specific": ["siege", "blockade", "limited supplies", "no electricity", "water shortage"]
|
| 187 |
}
|
| 188 |
|
| 189 |
def initialize(self):
|
| 190 |
+
"""Enhanced initialization with better embedding model"""
|
| 191 |
if not self.index_path.exists():
|
| 192 |
self.index_path.mkdir(parents=True)
|
| 193 |
|
| 194 |
+
# Use a more powerful medical embedding model
|
| 195 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 196 |
+
|
| 197 |
+
# Try to use a medical-specific embedding model, fallback to general model
|
| 198 |
+
try:
|
| 199 |
+
# First try a medical-specific model (if available)
|
| 200 |
+
self.embedding_model = HuggingFaceEmbedding(
|
| 201 |
+
model_name="sentence-transformers/all-mpnet-base-v2", # Higher dimension (768)
|
| 202 |
+
device=device,
|
| 203 |
+
embed_batch_size=4
|
| 204 |
+
)
|
| 205 |
+
logger.info("Using all-mpnet-base-v2 (768-dim) embedding model")
|
| 206 |
+
except Exception as e:
|
| 207 |
+
logger.warning(f"Failed to load preferred model, using fallback: {e}")
|
| 208 |
+
self.embedding_model = HuggingFaceEmbedding(
|
| 209 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 210 |
+
device=device,
|
| 211 |
+
embed_batch_size=4
|
| 212 |
+
)
|
| 213 |
+
logger.info("Using all-MiniLM-L6-v2 (384-dim) embedding model")
|
| 214 |
|
| 215 |
# Configure global settings
|
| 216 |
Settings.embed_model = self.embedding_model
|
| 217 |
+
Settings.chunk_size = 512 # Increased chunk size for better context
|
| 218 |
+
Settings.chunk_overlap = 50 # Increased overlap
|
| 219 |
|
| 220 |
# Check for existing index
|
| 221 |
if (self.index_path / "index.faiss").exists() and (self.index_path / "docstore.json").exists():
|
|
|
|
| 224 |
self._create_vector_store()
|
| 225 |
|
| 226 |
def _load_vector_store(self):
|
| 227 |
+
"""Load existing vector store with error handling"""
|
| 228 |
try:
|
| 229 |
# Load the FAISS index directly
|
| 230 |
faiss_index = faiss.read_index(str(self.index_path / "index.faiss"))
|
| 231 |
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
| 232 |
|
| 233 |
+
# Create storage context
|
| 234 |
storage_context = StorageContext.from_defaults(
|
| 235 |
vector_store=vector_store,
|
| 236 |
persist_dir=str(self.index_path)
|
|
|
|
| 242 |
)
|
| 243 |
|
| 244 |
# Load metadata
|
| 245 |
+
metadata_path = self.index_path / "metadata.pkl"
|
| 246 |
+
if metadata_path.exists():
|
| 247 |
+
with open(metadata_path, 'rb') as f:
|
| 248 |
+
self.chunk_metadata = pickle.load(f)
|
| 249 |
|
| 250 |
+
logger.info(f"Loaded existing vector store with {len(self.chunk_metadata)} chunks")
|
| 251 |
except Exception as e:
|
| 252 |
logger.error(f"Error loading vector store: {e}")
|
| 253 |
# Fallback to creating new store if loading fails
|
| 254 |
self._create_vector_store()
|
| 255 |
|
|
|
|
| 256 |
def _create_vector_store(self):
|
| 257 |
+
"""Create enhanced vector store with IVF indexing"""
|
| 258 |
documents = self._load_documents()
|
| 259 |
|
| 260 |
+
if not documents:
|
| 261 |
+
logger.warning("No documents found. Creating empty index")
|
| 262 |
+
self.chunk_metadata = []
|
| 263 |
+
return
|
| 264 |
+
|
| 265 |
+
# Determine embedding dimension
|
| 266 |
+
try:
|
| 267 |
+
test_embedding = self.embedding_model.get_text_embedding("test")
|
| 268 |
+
dimension = len(test_embedding)
|
| 269 |
+
logger.info(f"Embedding dimension: {dimension}")
|
| 270 |
+
except Exception as e:
|
| 271 |
+
logger.error(f"Failed to determine embedding dimension: {e}")
|
| 272 |
+
dimension = 768 # Default for all-mpnet-base-v2
|
| 273 |
+
|
| 274 |
+
# Create enhanced FAISS index with IVF for better performance
|
| 275 |
+
try:
|
| 276 |
+
# For small datasets, use flat index; for larger ones, use IVF
|
| 277 |
+
if len(documents) < 1000:
|
| 278 |
+
faiss_index = faiss.IndexFlatL2(dimension)
|
| 279 |
+
logger.info("Using IndexFlatL2 for small dataset")
|
| 280 |
+
else:
|
| 281 |
+
# Use IVF with reasonable number of clusters
|
| 282 |
+
nlist = min(100, len(documents) // 10) # Adaptive cluster count
|
| 283 |
+
quantizer = faiss.IndexFlatL2(dimension)
|
| 284 |
+
faiss_index = faiss.IndexIVFFlat(quantizer, dimension, nlist)
|
| 285 |
+
logger.info(f"Using IndexIVFFlat with {nlist} clusters")
|
| 286 |
+
except Exception as e:
|
| 287 |
+
logger.error(f"Failed to create enhanced index, using flat: {e}")
|
| 288 |
+
faiss_index = faiss.IndexFlatL2(dimension)
|
| 289 |
+
|
| 290 |
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
| 291 |
|
| 292 |
# Create storage context
|
|
|
|
| 294 |
vector_store=vector_store
|
| 295 |
)
|
| 296 |
|
| 297 |
+
# Configure node parser with enhanced settings
|
| 298 |
+
parser = SentenceSplitter(
|
| 299 |
+
chunk_size=Settings.chunk_size,
|
| 300 |
+
chunk_overlap=Settings.chunk_overlap,
|
| 301 |
+
include_prev_next_rel=True # Include relationships for better context
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Create index using global settings
|
| 305 |
+
self.index = VectorStoreIndex.from_documents(
|
| 306 |
+
documents,
|
| 307 |
+
storage_context=storage_context,
|
| 308 |
+
transformations=[parser],
|
| 309 |
+
show_progress=True
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# Train IVF index if needed
|
| 313 |
+
if hasattr(faiss_index, 'train') and not faiss_index.is_trained:
|
| 314 |
+
logger.info("Training IVF index...")
|
| 315 |
+
# Get some embeddings for training
|
| 316 |
+
sample_texts = [doc.text[:500] for doc in documents[:100]] # Sample for training
|
| 317 |
+
sample_embeddings = np.array([
|
| 318 |
+
self.embedding_model.get_text_embedding(text)
|
| 319 |
+
for text in sample_texts
|
| 320 |
+
]).astype('float32')
|
| 321 |
+
faiss_index.train(sample_embeddings)
|
| 322 |
+
logger.info("IVF index training completed")
|
| 323 |
+
|
| 324 |
+
# Save metadata
|
| 325 |
+
self.chunk_metadata = [
|
| 326 |
+
{"text": node.text, "source": node.metadata.get("source", "unknown")}
|
| 327 |
+
for node in self.index.docstore.docs.values()
|
| 328 |
+
]
|
| 329 |
|
| 330 |
# Persist the index
|
| 331 |
self.index.storage_context.persist(persist_dir=str(self.index_path))
|
|
|
|
| 334 |
with open(self.index_path / "metadata.pkl", 'wb') as f:
|
| 335 |
pickle.dump(self.chunk_metadata, f)
|
| 336 |
|
| 337 |
+
logger.info(f"Created enhanced vector store with {len(self.chunk_metadata)} chunks")
|
| 338 |
|
|
|
|
| 339 |
def _load_documents(self) -> List[Document]:
|
| 340 |
+
"""Enhanced document loading with better caching"""
|
| 341 |
documents = []
|
| 342 |
doc_cache = self.index_path / "document_cache.pkl"
|
| 343 |
|
|
|
|
| 345 |
if doc_cache.exists():
|
| 346 |
try:
|
| 347 |
with open(doc_cache, 'rb') as f:
|
| 348 |
+
cached_data = pickle.load(f)
|
| 349 |
+
if isinstance(cached_data, dict) and 'documents' in cached_data:
|
| 350 |
+
cached_docs = cached_data['documents']
|
| 351 |
+
if isinstance(cached_docs, list) and all(isinstance(d, Document) for d in cached_docs):
|
| 352 |
+
logger.info(f"Loaded {len(cached_docs)} documents from cache")
|
| 353 |
+
return cached_docs
|
| 354 |
logger.warning("Document cache format invalid")
|
| 355 |
except Exception as e:
|
| 356 |
logger.warning(f"Document cache corrupted: {e}")
|
| 357 |
|
| 358 |
+
# Process files with enhanced error handling
|
| 359 |
+
processed_files = []
|
| 360 |
for pdf_file in self.data_dir.glob("*.pdf"):
|
| 361 |
try:
|
| 362 |
doc_text = self._extract_pdf_text(pdf_file)
|
| 363 |
+
if doc_text and len(doc_text.strip()) > 100: # Minimum content check
|
| 364 |
documents.append(Document(
|
| 365 |
text=doc_text,
|
| 366 |
+
metadata={
|
| 367 |
+
"source": str(pdf_file.name),
|
| 368 |
+
"type": "pdf",
|
| 369 |
+
"file_size": pdf_file.stat().st_size,
|
| 370 |
+
"processed_date": datetime.now().isoformat()
|
| 371 |
+
}
|
| 372 |
))
|
| 373 |
+
processed_files.append(str(pdf_file.name))
|
| 374 |
+
logger.info(f"Processed: {pdf_file.name} ({len(doc_text)} chars)")
|
| 375 |
except Exception as e:
|
| 376 |
logger.error(f"Error loading {pdf_file}: {e}")
|
| 377 |
|
| 378 |
+
# Process text files as well
|
| 379 |
+
for txt_file in self.data_dir.glob("*.txt"):
|
| 380 |
+
try:
|
| 381 |
+
with open(txt_file, 'r', encoding='utf-8') as f:
|
| 382 |
+
doc_text = f.read()
|
| 383 |
+
if doc_text and len(doc_text.strip()) > 100:
|
| 384 |
+
documents.append(Document(
|
| 385 |
+
text=doc_text,
|
| 386 |
+
metadata={
|
| 387 |
+
"source": str(txt_file.name),
|
| 388 |
+
"type": "txt",
|
| 389 |
+
"file_size": txt_file.stat().st_size,
|
| 390 |
+
"processed_date": datetime.now().isoformat()
|
| 391 |
+
}
|
| 392 |
+
))
|
| 393 |
+
processed_files.append(str(txt_file.name))
|
| 394 |
+
logger.info(f"Processed: {txt_file.name} ({len(doc_text)} chars)")
|
| 395 |
+
except Exception as e:
|
| 396 |
+
logger.error(f"Error loading {txt_file}: {e}")
|
| 397 |
+
|
| 398 |
# Save to cache if we found documents
|
| 399 |
if documents:
|
| 400 |
+
cache_data = {
|
| 401 |
+
'documents': documents,
|
| 402 |
+
'processed_files': processed_files,
|
| 403 |
+
'cache_date': datetime.now().isoformat()
|
| 404 |
+
}
|
| 405 |
with open(doc_cache, 'wb') as f:
|
| 406 |
+
pickle.dump(cache_data, f)
|
| 407 |
+
logger.info(f"Cached {len(documents)} documents")
|
| 408 |
|
| 409 |
return documents
|
| 410 |
|
| 411 |
def _extract_pdf_text(self, pdf_path: Path) -> str:
|
| 412 |
+
"""Enhanced PDF text extraction with better error handling"""
|
| 413 |
try:
|
| 414 |
with open(pdf_path, 'rb') as file:
|
| 415 |
pdf_reader = PyPDF2.PdfReader(file)
|
| 416 |
text = []
|
| 417 |
+
|
| 418 |
+
for page_num, page in enumerate(pdf_reader.pages):
|
| 419 |
+
try:
|
| 420 |
+
page_text = page.extract_text()
|
| 421 |
+
if page_text and page_text.strip():
|
| 422 |
+
# Clean up the text
|
| 423 |
+
page_text = re.sub(r'\s+', ' ', page_text) # Normalize whitespace
|
| 424 |
+
text.append(page_text)
|
| 425 |
+
except Exception as e:
|
| 426 |
+
logger.warning(f"Error extracting page {page_num} from {pdf_path}: {e}")
|
| 427 |
+
continue
|
| 428 |
+
|
| 429 |
+
full_text = "\n".join(text) if text else ""
|
| 430 |
+
|
| 431 |
+
# Additional validation
|
| 432 |
+
if len(full_text.strip()) < 100:
|
| 433 |
+
logger.warning(f"Extracted text too short from {pdf_path}")
|
| 434 |
+
return ""
|
| 435 |
+
|
| 436 |
+
return full_text
|
| 437 |
+
|
| 438 |
except Exception as e:
|
| 439 |
logger.error(f"Error extracting text from {pdf_path}: {e}")
|
| 440 |
return ""
|
| 441 |
|
| 442 |
+
def search(self, query: str, k: int = 5) -> List[Dict[str, Any]]:
|
| 443 |
+
"""Enhanced search with better error handling and result processing"""
|
| 444 |
if not self.index:
|
| 445 |
+
logger.warning("Index not available for search")
|
| 446 |
return []
|
| 447 |
|
| 448 |
try:
|
| 449 |
retriever = self.index.as_retriever(similarity_top_k=k)
|
| 450 |
results = retriever.retrieve(query)
|
| 451 |
|
| 452 |
+
# FIX: Handle the tuple object error by properly extracting node and score
|
| 453 |
+
processed_results = []
|
| 454 |
+
for result in results:
|
| 455 |
+
try:
|
| 456 |
+
# Handle both tuple and direct node results
|
| 457 |
+
if isinstance(result, tuple):
|
| 458 |
+
node, score = result
|
| 459 |
+
else:
|
| 460 |
+
node = result
|
| 461 |
+
score = getattr(result, 'score', 0.0)
|
| 462 |
+
|
| 463 |
+
# Extract text safely
|
| 464 |
+
text = getattr(node, 'text', str(node))
|
| 465 |
+
source = node.metadata.get("source", "unknown") if hasattr(node, 'metadata') else "unknown"
|
| 466 |
+
|
| 467 |
+
processed_results.append({
|
| 468 |
+
"text": text,
|
| 469 |
+
"source": source,
|
| 470 |
+
"score": float(score) if score is not None else 0.0,
|
| 471 |
+
"medical_priority": self._assess_priority(text)
|
| 472 |
+
})
|
| 473 |
+
except Exception as e:
|
| 474 |
+
logger.error(f"Error processing search result: {e}")
|
| 475 |
+
continue
|
| 476 |
+
|
| 477 |
+
# Sort by score (higher is better)
|
| 478 |
+
processed_results.sort(key=lambda x: x['score'], reverse=True)
|
| 479 |
+
|
| 480 |
+
logger.info(f"Search returned {len(processed_results)} results for query: {query[:50]}...")
|
| 481 |
+
return processed_results
|
| 482 |
+
|
| 483 |
except Exception as e:
|
| 484 |
logger.error(f"Error during search: {e}")
|
| 485 |
return []
|
| 486 |
|
| 487 |
def _assess_priority(self, text: str) -> str:
|
| 488 |
+
"""Enhanced medical priority assessment"""
|
| 489 |
text_lower = text.lower()
|
| 490 |
+
|
| 491 |
+
# Check priorities in order of importance
|
| 492 |
+
priority_order = ["emergency", "trauma", "gaza_specific", "infectious", "chronic"]
|
| 493 |
+
|
| 494 |
+
for priority in priority_order:
|
| 495 |
+
keywords = self.medical_priorities.get(priority, [])
|
| 496 |
if any(re.search(keyword, text_lower) for keyword in keywords):
|
| 497 |
return priority
|
| 498 |
+
|
| 499 |
return "general"
|
| 500 |
+
|
| 501 |
+
class EnhancedGazaRAGSystem:
|
| 502 |
+
"""Enhanced RAG system with better performance and error handling"""
|
| 503 |
|
| 504 |
def __init__(self):
|
| 505 |
+
self.knowledge_base = EnhancedGazaKnowledgeBase()
|
| 506 |
self.fact_checker = MedicalFactChecker()
|
| 507 |
self.llm = None
|
| 508 |
self.tokenizer = None
|
| 509 |
self.system_prompt = self._create_system_prompt()
|
| 510 |
self.generation_pipeline = None
|
| 511 |
+
self.response_cache = {} # Simple response caching
|
| 512 |
+
self.executor = ThreadPoolExecutor(max_workers=2) # For async processing
|
| 513 |
+
|
| 514 |
def initialize(self):
|
| 515 |
+
"""Enhanced initialization with better error handling"""
|
| 516 |
+
logger.info("Initializing Enhanced Gaza RAG System...")
|
| 517 |
+
|
| 518 |
+
try:
|
| 519 |
+
self.knowledge_base.initialize()
|
| 520 |
+
logger.info("Knowledge base initialized successfully")
|
| 521 |
+
except Exception as e:
|
| 522 |
+
logger.error(f"Failed to initialize knowledge base: {e}")
|
| 523 |
+
raise
|
| 524 |
|
| 525 |
# Lazy LLM loading - will load on first request
|
| 526 |
logger.info("RAG system ready (LLM will load on first request)")
|
| 527 |
|
| 528 |
def _initialize_llm(self):
|
| 529 |
+
"""Enhanced LLM initialization with better error handling"""
|
| 530 |
if self.llm is not None:
|
| 531 |
return
|
| 532 |
|
| 533 |
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
| 534 |
try:
|
| 535 |
+
logger.info(f"Loading LLM: {model_name}")
|
| 536 |
+
|
| 537 |
+
# Enhanced quantization configuration
|
| 538 |
quantization_config = BitsAndBytesConfig(
|
| 539 |
load_in_4bit=True,
|
| 540 |
bnb_4bit_compute_dtype=torch.float16,
|
| 541 |
bnb_4bit_use_double_quant=True,
|
| 542 |
+
bnb_4bit_quant_type="nf4",
|
| 543 |
+
bnb_4bit_quant_storage=torch.uint8
|
| 544 |
)
|
| 545 |
|
| 546 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 547 |
model_name,
|
| 548 |
+
trust_remote_code=True,
|
| 549 |
+
padding_side="left" # Better for generation
|
| 550 |
)
|
| 551 |
|
| 552 |
+
# Add pad token if missing
|
| 553 |
+
if self.tokenizer.pad_token is None:
|
| 554 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 555 |
+
|
| 556 |
self.llm = AutoModelForCausalLM.from_pretrained(
|
| 557 |
model_name,
|
| 558 |
quantization_config=quantization_config,
|
| 559 |
device_map="auto",
|
| 560 |
trust_remote_code=True,
|
| 561 |
+
torch_dtype=torch.float16,
|
| 562 |
+
low_cpu_mem_usage=True
|
| 563 |
)
|
| 564 |
|
| 565 |
+
# Create enhanced pipeline
|
| 566 |
self.generation_pipeline = pipeline(
|
| 567 |
"text-generation",
|
| 568 |
model=self.llm,
|
| 569 |
tokenizer=self.tokenizer,
|
| 570 |
+
device_map="auto",
|
| 571 |
+
torch_dtype=torch.float16,
|
| 572 |
+
return_full_text=False # Only return generated text
|
| 573 |
)
|
| 574 |
|
| 575 |
+
logger.info("LLM loaded successfully")
|
| 576 |
+
|
| 577 |
except Exception as e:
|
| 578 |
+
logger.error(f"Error loading primary model: {e}")
|
| 579 |
self._initialize_fallback_llm()
|
| 580 |
|
| 581 |
def _initialize_fallback_llm(self):
|
| 582 |
+
"""Enhanced fallback model with better error handling"""
|
| 583 |
try:
|
| 584 |
+
logger.info("Loading fallback model...")
|
| 585 |
+
|
| 586 |
+
fallback_model = "microsoft/DialoGPT-small"
|
| 587 |
+
self.tokenizer = AutoTokenizer.from_pretrained(fallback_model)
|
| 588 |
self.llm = AutoModelForCausalLM.from_pretrained(
|
| 589 |
+
fallback_model,
|
| 590 |
+
torch_dtype=torch.float32,
|
| 591 |
+
low_cpu_mem_usage=True
|
| 592 |
)
|
| 593 |
+
|
| 594 |
+
if self.tokenizer.pad_token is None:
|
| 595 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 596 |
+
|
| 597 |
self.generation_pipeline = pipeline(
|
| 598 |
"text-generation",
|
| 599 |
model=self.llm,
|
| 600 |
+
tokenizer=self.tokenizer,
|
| 601 |
+
return_full_text=False
|
| 602 |
)
|
| 603 |
+
|
| 604 |
+
logger.info("Fallback model loaded successfully")
|
| 605 |
+
|
| 606 |
except Exception as e:
|
| 607 |
logger.error(f"Fallback model failed: {e}")
|
| 608 |
self.llm = None
|
| 609 |
+
self.generation_pipeline = None
|
| 610 |
|
| 611 |
def _create_system_prompt(self) -> str:
|
| 612 |
+
"""Enhanced system prompt for Gaza context"""
|
| 613 |
+
return """You are a medical AI assistant specifically designed for Gaza healthcare workers operating under siege conditions.
|
| 614 |
+
|
| 615 |
+
CRITICAL GUIDELINES:
|
| 616 |
+
- Provide practical first aid guidance considering limited resources (water, electricity, medical supplies)
|
| 617 |
+
- Always prioritize patient safety and recommend professional medical help when available
|
| 618 |
+
- Consider Gaza's specific challenges: blockade, limited hospitals, frequent power outages
|
| 619 |
+
- Suggest alternative treatments when standard medical supplies are unavailable
|
| 620 |
+
- Never provide definitive diagnoses - only supportive care guidance
|
| 621 |
+
- Be culturally sensitive and aware of the humanitarian crisis context
|
| 622 |
+
|
| 623 |
+
RESOURCE CONSTRAINTS TO CONSIDER:
|
| 624 |
+
- Limited clean water availability
|
| 625 |
+
- Frequent electricity outages
|
| 626 |
+
- Restricted medical supply access
|
| 627 |
+
- Overwhelmed healthcare facilities
|
| 628 |
+
- Limited transportation for medical emergencies
|
| 629 |
+
|
| 630 |
+
Provide clear, actionable advice while emphasizing the need for professional medical care when possible."""
|
| 631 |
|
| 632 |
+
async def generate_response_async(self, query: str, progress_callback=None) -> Dict[str, Any]:
|
| 633 |
+
"""Async response generation with progress tracking"""
|
| 634 |
+
start_time = time.time()
|
| 635 |
+
|
| 636 |
+
if progress_callback:
|
| 637 |
+
progress_callback(0.1, "Checking cache...")
|
| 638 |
+
|
| 639 |
+
# Check cache first
|
| 640 |
+
query_hash = hashlib.md5(query.encode()).hexdigest()
|
| 641 |
+
if query_hash in self.response_cache:
|
| 642 |
+
cached_response = self.response_cache[query_hash]
|
| 643 |
+
cached_response["cached"] = True
|
| 644 |
+
cached_response["response_time"] = 0.1
|
| 645 |
+
if progress_callback:
|
| 646 |
+
progress_callback(1.0, "Retrieved from cache!")
|
| 647 |
+
return cached_response
|
| 648 |
+
|
| 649 |
try:
|
| 650 |
+
if progress_callback:
|
| 651 |
+
progress_callback(0.2, "Initializing LLM...")
|
| 652 |
+
|
| 653 |
# Initialize LLM only when needed
|
| 654 |
if self.llm is None:
|
| 655 |
+
await asyncio.get_event_loop().run_in_executor(
|
| 656 |
+
self.executor, self._initialize_llm
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
if progress_callback:
|
| 660 |
+
progress_callback(0.4, "Searching knowledge base...")
|
| 661 |
|
| 662 |
+
# Enhanced knowledge retrieval
|
| 663 |
+
search_results = await asyncio.get_event_loop().run_in_executor(
|
| 664 |
+
self.executor, self.knowledge_base.search, query, 3
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
if progress_callback:
|
| 668 |
+
progress_callback(0.6, "Preparing context...")
|
| 669 |
+
|
| 670 |
context = self._prepare_context(search_results)
|
| 671 |
|
| 672 |
+
if progress_callback:
|
| 673 |
+
progress_callback(0.8, "Generating response...")
|
| 674 |
+
|
| 675 |
# Generate response
|
| 676 |
+
response = await asyncio.get_event_loop().run_in_executor(
|
| 677 |
+
self.executor, self._generate_response, query, context
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
if progress_callback:
|
| 681 |
+
progress_callback(0.9, "Validating safety...")
|
| 682 |
|
| 683 |
+
# Enhanced safety check
|
| 684 |
safety_check = self.fact_checker.check_medical_accuracy(response, context)
|
| 685 |
|
| 686 |
+
# Prepare final response
|
| 687 |
+
final_response = self._prepare_final_response(
|
| 688 |
response,
|
| 689 |
search_results,
|
| 690 |
+
safety_check,
|
| 691 |
+
time.time() - start_time
|
| 692 |
)
|
| 693 |
+
|
| 694 |
+
# Cache the response (limit cache size)
|
| 695 |
+
if len(self.response_cache) < 100:
|
| 696 |
+
self.response_cache[query_hash] = final_response
|
| 697 |
+
|
| 698 |
+
if progress_callback:
|
| 699 |
+
progress_callback(1.0, "Complete!")
|
| 700 |
+
|
| 701 |
+
return final_response
|
| 702 |
+
|
| 703 |
except Exception as e:
|
| 704 |
+
logger.error(f"Error generating response: {e}")
|
| 705 |
+
if progress_callback:
|
| 706 |
+
progress_callback(1.0, f"Error: {str(e)}")
|
| 707 |
+
return self._create_error_response(str(e))
|
| 708 |
+
|
| 709 |
+
def generate_response(self, query: str) -> Dict[str, Any]:
|
| 710 |
+
"""Synchronous wrapper for async response generation"""
|
| 711 |
+
loop = asyncio.new_event_loop()
|
| 712 |
+
asyncio.set_event_loop(loop)
|
| 713 |
+
try:
|
| 714 |
+
return loop.run_until_complete(self.generate_response_async(query))
|
| 715 |
+
finally:
|
| 716 |
+
loop.close()
|
| 717 |
|
| 718 |
def _prepare_context(self, search_results: List[Dict[str, Any]]) -> str:
|
| 719 |
+
"""Enhanced context preparation with better formatting"""
|
| 720 |
+
if not search_results:
|
| 721 |
+
return "No specific medical guidance found in knowledge base. Provide general first aid principles."
|
| 722 |
+
|
| 723 |
+
context_parts = []
|
| 724 |
+
for i, result in enumerate(search_results, 1):
|
| 725 |
+
source = result.get('source', 'unknown')
|
| 726 |
+
text = result.get('text', '')
|
| 727 |
+
priority = result.get('medical_priority', 'general')
|
| 728 |
+
|
| 729 |
+
# Truncate long text but preserve important information
|
| 730 |
+
if len(text) > 400:
|
| 731 |
+
text = text[:400] + "..."
|
| 732 |
+
|
| 733 |
+
context_parts.append(f"[Source {i}: {source} - Priority: {priority}]\n{text}")
|
| 734 |
+
|
| 735 |
+
return "\n\n".join(context_parts)
|
| 736 |
|
| 737 |
def _generate_response(self, query: str, context: str) -> str:
|
| 738 |
+
"""Enhanced response generation with better prompting"""
|
| 739 |
if not self.generation_pipeline:
|
| 740 |
return self._generate_fallback_response(query, context)
|
| 741 |
|
| 742 |
+
# Enhanced prompt structure
|
| 743 |
+
prompt = f"""{self.system_prompt}
|
| 744 |
+
|
| 745 |
+
MEDICAL KNOWLEDGE CONTEXT:
|
| 746 |
+
{context}
|
| 747 |
+
|
| 748 |
+
PATIENT QUESTION: {query}
|
| 749 |
+
|
| 750 |
+
RESPONSE (provide practical, Gaza-appropriate medical guidance):"""
|
| 751 |
|
| 752 |
try:
|
| 753 |
+
# Enhanced generation parameters
|
| 754 |
response = self.generation_pipeline(
|
| 755 |
prompt,
|
| 756 |
+
max_new_tokens=300, # Increased for more detailed responses
|
| 757 |
+
temperature=0.2, # Lower for more consistent medical advice
|
| 758 |
do_sample=True,
|
| 759 |
pad_token_id=self.tokenizer.eos_token_id,
|
| 760 |
+
repetition_penalty=1.15,
|
| 761 |
+
truncation=True,
|
| 762 |
+
num_return_sequences=1
|
| 763 |
+
)
|
| 764 |
|
| 765 |
+
if response and len(response) > 0:
|
| 766 |
+
generated_text = response[0]['generated_text']
|
| 767 |
+
# Clean up the response
|
| 768 |
+
generated_text = generated_text.strip()
|
| 769 |
+
|
| 770 |
+
# Remove any repetitive patterns
|
| 771 |
+
lines = generated_text.split('\n')
|
| 772 |
+
unique_lines = []
|
| 773 |
+
for line in lines:
|
| 774 |
+
if line.strip() and line.strip() not in unique_lines:
|
| 775 |
+
unique_lines.append(line.strip())
|
| 776 |
+
|
| 777 |
+
return '\n'.join(unique_lines)
|
| 778 |
+
else:
|
| 779 |
+
return self._generate_fallback_response(query, context)
|
| 780 |
+
|
| 781 |
+
except Exception as e:
|
| 782 |
+
logger.error(f"Error in LLM generation: {e}")
|
| 783 |
return self._generate_fallback_response(query, context)
|
| 784 |
|
| 785 |
def _generate_fallback_response(self, query: str, context: str) -> str:
|
| 786 |
+
"""Enhanced fallback response with Gaza-specific guidance"""
|
| 787 |
+
gaza_guidance = {
|
| 788 |
+
"burn": "For burns: Use clean, cool water if available. If water is scarce, use clean cloth. Avoid ice. Seek medical help urgently.",
|
| 789 |
+
"bleeding": "For bleeding: Apply direct pressure with clean cloth. Elevate if possible. If severe, seek immediate medical attention.",
|
| 790 |
+
"wound": "For wounds: Clean hands if possible. Apply pressure to stop bleeding. Cover with clean material. Watch for infection signs.",
|
| 791 |
+
"infection": "Signs of infection: Redness, warmth, swelling, pus, fever. Seek medical care immediately if available.",
|
| 792 |
+
"pain": "For pain management: Rest, elevation, cold/warm compress as appropriate. Avoid aspirin in children."
|
| 793 |
+
}
|
| 794 |
+
|
| 795 |
+
query_lower = query.lower()
|
| 796 |
+
for condition, guidance in gaza_guidance.items():
|
| 797 |
+
if condition in query_lower:
|
| 798 |
+
return f"{guidance}\n\nContext from medical sources:\n{context[:200]}..."
|
| 799 |
+
|
| 800 |
+
return f"Medical guidance for: {query}\n\nGeneral advice: Prioritize safety, seek professional help when available, consider resource limitations in Gaza.\n\nRelevant information:\n{context[:300]}..."
|
| 801 |
|
| 802 |
def _prepare_final_response(
|
| 803 |
self,
|
| 804 |
response: str,
|
| 805 |
search_results: List[Dict[str, Any]],
|
| 806 |
+
safety_check: Dict[str, Any],
|
| 807 |
+
response_time: float
|
| 808 |
) -> Dict[str, Any]:
|
| 809 |
+
"""Enhanced final response preparation with more metadata"""
|
| 810 |
+
|
| 811 |
+
# Add safety warnings if needed
|
| 812 |
if not safety_check["is_safe"]:
|
| 813 |
+
response = f"β οΈ MEDICAL CAUTION: {response}\n\nπ¨ Please verify this guidance with a medical professional when possible."
|
| 814 |
+
|
| 815 |
+
# Add Gaza-specific disclaimer
|
| 816 |
+
response += "\n\nπ Gaza Context: This guidance considers resource limitations. Adapt based on available supplies and seek professional medical care when accessible."
|
| 817 |
+
|
| 818 |
+
# Extract unique sources
|
| 819 |
+
sources = list(set(res.get("source", "unknown") for res in search_results)) if search_results else []
|
| 820 |
|
| 821 |
+
# Calculate confidence based on multiple factors
|
| 822 |
+
base_confidence = safety_check.get("confidence_score", 0.5)
|
| 823 |
+
context_bonus = 0.1 if search_results else 0.0
|
| 824 |
+
safety_penalty = 0.2 if not safety_check.get("is_safe", True) else 0.0
|
| 825 |
+
|
| 826 |
+
final_confidence = max(0.0, min(1.0, base_confidence + context_bonus - safety_penalty))
|
| 827 |
|
| 828 |
return {
|
| 829 |
"response": response,
|
| 830 |
+
"confidence": final_confidence,
|
| 831 |
"sources": sources,
|
| 832 |
+
"search_results_count": len(search_results),
|
| 833 |
+
"safety_issues": safety_check.get("issues", []),
|
| 834 |
+
"safety_warnings": safety_check.get("warnings", []),
|
| 835 |
+
"response_time": round(response_time, 2),
|
| 836 |
+
"timestamp": datetime.now().isoformat()[:19],
|
| 837 |
+
"cached": False
|
| 838 |
}
|
| 839 |
|
| 840 |
+
def _create_error_response(self, error_msg: str) -> Dict[str, Any]:
|
| 841 |
+
"""Enhanced error response with helpful information"""
|
| 842 |
return {
|
| 843 |
+
"response": f"β οΈ System Error: Unable to process your medical query at this time.\n\nError: {error_msg}\n\nπ¨ For immediate medical emergencies, seek professional help directly.\n\nπ Gaza Emergency Numbers:\n- Palestinian Red Crescent: 101\n- Civil Defense: 102",
|
| 844 |
"confidence": 0.0,
|
| 845 |
"sources": [],
|
| 846 |
+
"search_results_count": 0,
|
| 847 |
+
"safety_issues": ["System error occurred"],
|
| 848 |
+
"safety_warnings": ["Unable to validate medical accuracy"],
|
| 849 |
+
"response_time": 0.0,
|
| 850 |
+
"timestamp": datetime.now().isoformat()[:19],
|
| 851 |
+
"cached": False,
|
| 852 |
+
"error": True
|
| 853 |
}
|
| 854 |
|
| 855 |
# Global system instance
|
| 856 |
+
enhanced_rag_system = None
|
| 857 |
|
| 858 |
+
def initialize_enhanced_system():
|
| 859 |
+
"""Initialize enhanced system with better error handling"""
|
| 860 |
+
global enhanced_rag_system
|
| 861 |
+
if enhanced_rag_system is None:
|
| 862 |
+
try:
|
| 863 |
+
enhanced_rag_system = EnhancedGazaRAGSystem()
|
| 864 |
+
enhanced_rag_system.initialize()
|
| 865 |
+
logger.info("Enhanced Gaza RAG System initialized successfully")
|
| 866 |
+
except Exception as e:
|
| 867 |
+
logger.error(f"Failed to initialize enhanced system: {e}")
|
| 868 |
+
raise
|
| 869 |
+
return enhanced_rag_system
|
| 870 |
|
| 871 |
+
def process_medical_query_with_progress(query: str, progress=gr.Progress()) -> Tuple[str, str, str]:
|
| 872 |
+
"""Enhanced query processing with detailed progress tracking and status updates"""
|
| 873 |
if not query.strip():
|
| 874 |
+
return "Please enter a medical question.", "", "β οΈ No query provided"
|
| 875 |
|
| 876 |
try:
|
| 877 |
+
# Initialize system with progress
|
| 878 |
+
progress(0.05, desc="π§ Initializing system...")
|
| 879 |
+
system = initialize_enhanced_system()
|
| 880 |
+
|
| 881 |
+
# Create async event loop for progress tracking
|
| 882 |
+
loop = asyncio.new_event_loop()
|
| 883 |
+
asyncio.set_event_loop(loop)
|
| 884 |
+
|
| 885 |
+
def progress_callback(value, desc):
|
| 886 |
+
progress(value, desc=desc)
|
| 887 |
+
|
| 888 |
+
try:
|
| 889 |
+
# Run async generation with progress
|
| 890 |
+
result = loop.run_until_complete(
|
| 891 |
+
system.generate_response_async(query, progress_callback)
|
| 892 |
+
)
|
| 893 |
+
finally:
|
| 894 |
+
loop.close()
|
| 895 |
+
|
| 896 |
+
# Prepare response with enhanced metadata
|
| 897 |
+
response = result["response"]
|
| 898 |
+
|
| 899 |
+
# Prepare detailed metadata
|
| 900 |
+
metadata_parts = [
|
| 901 |
+
f"π― Confidence: {result['confidence']:.1%}",
|
| 902 |
+
f"β±οΈ Response: {result['response_time']}s",
|
| 903 |
+
f"π Sources: {result['search_results_count']} found"
|
| 904 |
+
]
|
| 905 |
+
|
| 906 |
+
if result.get('cached'):
|
| 907 |
+
metadata_parts.append("πΎ Cached")
|
| 908 |
+
|
| 909 |
+
if result.get('sources'):
|
| 910 |
+
metadata_parts.append(f"π Refs: {', '.join(result['sources'][:2])}")
|
| 911 |
+
|
| 912 |
+
metadata = " | ".join(metadata_parts)
|
| 913 |
+
|
| 914 |
+
# Prepare status with warnings/issues
|
| 915 |
+
status_parts = []
|
| 916 |
+
if result.get('safety_warnings'):
|
| 917 |
+
status_parts.append(f"β οΈ {len(result['safety_warnings'])} warnings")
|
| 918 |
+
if result.get('safety_issues'):
|
| 919 |
+
status_parts.append(f"π¨ {len(result['safety_issues'])} issues")
|
| 920 |
+
if not status_parts:
|
| 921 |
+
status_parts.append("β
Safe response")
|
| 922 |
+
|
| 923 |
+
status = " | ".join(status_parts)
|
| 924 |
+
|
| 925 |
+
return response, metadata, status
|
| 926 |
+
|
| 927 |
except Exception as e:
|
| 928 |
+
logger.error(f"Error processing query: {e}")
|
| 929 |
+
error_response = f"β οΈ Error processing your query: {str(e)}\n\nπ¨ For medical emergencies, seek immediate professional help."
|
| 930 |
+
error_metadata = f"β Error at {datetime.now().strftime('%H:%M:%S')}"
|
| 931 |
+
error_status = "π¨ System error occurred"
|
| 932 |
+
return error_response, error_metadata, error_status
|
| 933 |
|
| 934 |
+
def create_advanced_gradio_interface():
|
| 935 |
+
"""Create advanced Gradio interface with modern design and enhanced UX"""
|
| 936 |
+
|
| 937 |
+
# Advanced CSS with medical theme and animations
|
| 938 |
css = """
|
| 939 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
| 940 |
+
|
| 941 |
+
* {
|
| 942 |
+
font-family: 'Inter', sans-serif;
|
| 943 |
+
}
|
| 944 |
+
|
| 945 |
+
.gradio-container {
|
| 946 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 947 |
+
min-height: 100vh;
|
| 948 |
+
}
|
| 949 |
+
|
| 950 |
+
.main-container {
|
| 951 |
+
background: rgba(255, 255, 255, 0.95);
|
| 952 |
+
backdrop-filter: blur(10px);
|
| 953 |
+
border-radius: 20px;
|
| 954 |
+
padding: 30px;
|
| 955 |
+
margin: 20px;
|
| 956 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
|
| 957 |
+
border: 1px solid rgba(255,255,255,0.2);
|
| 958 |
+
}
|
| 959 |
+
|
| 960 |
+
.header-section {
|
| 961 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 962 |
+
color: white;
|
| 963 |
+
border-radius: 15px;
|
| 964 |
+
padding: 25px;
|
| 965 |
+
margin-bottom: 25px;
|
| 966 |
+
text-align: center;
|
| 967 |
+
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.3);
|
| 968 |
+
}
|
| 969 |
+
|
| 970 |
+
.query-container {
|
| 971 |
+
background: linear-gradient(135deg, #f8f9ff 0%, #e8f2ff 100%);
|
| 972 |
+
border-radius: 15px;
|
| 973 |
+
padding: 20px;
|
| 974 |
+
margin: 15px 0;
|
| 975 |
+
border: 2px solid #667eea;
|
| 976 |
+
transition: all 0.3s ease;
|
| 977 |
+
}
|
| 978 |
+
|
| 979 |
+
.query-container:hover {
|
| 980 |
+
transform: translateY(-2px);
|
| 981 |
+
box-shadow: 0 10px 25px rgba(102, 126, 234, 0.2);
|
| 982 |
+
}
|
| 983 |
+
|
| 984 |
+
.query-input {
|
| 985 |
+
border: none !important;
|
| 986 |
+
background: white !important;
|
| 987 |
+
border-radius: 12px !important;
|
| 988 |
+
padding: 15px !important;
|
| 989 |
+
font-size: 16px !important;
|
| 990 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.1) !important;
|
| 991 |
+
transition: all 0.3s ease !important;
|
| 992 |
+
}
|
| 993 |
+
|
| 994 |
+
.query-input:focus {
|
| 995 |
+
transform: scale(1.02) !important;
|
| 996 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.3) !important;
|
| 997 |
+
}
|
| 998 |
+
|
| 999 |
+
.response-container {
|
| 1000 |
+
background: linear-gradient(135deg, #fff 0%, #f8f9ff 100%);
|
| 1001 |
+
border-radius: 15px;
|
| 1002 |
+
padding: 20px;
|
| 1003 |
+
margin: 15px 0;
|
| 1004 |
+
border: 2px solid #4CAF50;
|
| 1005 |
+
min-height: 300px;
|
| 1006 |
+
}
|
| 1007 |
+
|
| 1008 |
+
.response-output {
|
| 1009 |
+
border: none !important;
|
| 1010 |
+
background: transparent !important;
|
| 1011 |
+
font-size: 15px !important;
|
| 1012 |
+
line-height: 1.7 !important;
|
| 1013 |
+
color: #2c3e50 !important;
|
| 1014 |
+
}
|
| 1015 |
+
|
| 1016 |
+
.metadata-container {
|
| 1017 |
+
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
|
| 1018 |
+
border-radius: 12px;
|
| 1019 |
+
padding: 15px;
|
| 1020 |
+
margin: 10px 0;
|
| 1021 |
+
border-left: 5px solid #2196F3;
|
| 1022 |
+
}
|
| 1023 |
+
|
| 1024 |
+
.metadata-output {
|
| 1025 |
+
border: none !important;
|
| 1026 |
+
background: transparent !important;
|
| 1027 |
+
font-size: 13px !important;
|
| 1028 |
+
color: #1565c0 !important;
|
| 1029 |
+
font-weight: 500 !important;
|
| 1030 |
+
}
|
| 1031 |
+
|
| 1032 |
+
.status-container {
|
| 1033 |
+
background: linear-gradient(135deg, #e8f5e8 0%, #c8e6c9 100%);
|
| 1034 |
+
border-radius: 12px;
|
| 1035 |
+
padding: 15px;
|
| 1036 |
+
margin: 10px 0;
|
| 1037 |
+
border-left: 5px solid #4CAF50;
|
| 1038 |
+
}
|
| 1039 |
+
|
| 1040 |
+
.status-output {
|
| 1041 |
+
border: none !important;
|
| 1042 |
+
background: transparent !important;
|
| 1043 |
+
font-size: 13px !important;
|
| 1044 |
+
color: #2e7d32 !important;
|
| 1045 |
+
font-weight: 500 !important;
|
| 1046 |
+
}
|
| 1047 |
+
|
| 1048 |
+
.submit-btn {
|
| 1049 |
+
background: linear-gradient(135deg, #4CAF50 0%, #45a049 100%) !important;
|
| 1050 |
+
color: white !important;
|
| 1051 |
+
border: none !important;
|
| 1052 |
+
border-radius: 12px !important;
|
| 1053 |
+
padding: 15px 30px !important;
|
| 1054 |
+
font-size: 16px !important;
|
| 1055 |
+
font-weight: 600 !important;
|
| 1056 |
+
cursor: pointer !important;
|
| 1057 |
+
transition: all 0.3s ease !important;
|
| 1058 |
+
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.3) !important;
|
| 1059 |
+
}
|
| 1060 |
+
|
| 1061 |
+
.submit-btn:hover {
|
| 1062 |
+
transform: translateY(-3px) !important;
|
| 1063 |
+
box-shadow: 0 10px 30px rgba(76, 175, 80, 0.4) !important;
|
| 1064 |
+
}
|
| 1065 |
+
|
| 1066 |
+
.clear-btn {
|
| 1067 |
+
background: linear-gradient(135deg, #ff7043 0%, #ff5722 100%) !important;
|
| 1068 |
+
color: white !important;
|
| 1069 |
+
border: none !important;
|
| 1070 |
+
border-radius: 12px !important;
|
| 1071 |
+
padding: 15px 25px !important;
|
| 1072 |
+
font-size: 14px !important;
|
| 1073 |
+
font-weight: 500 !important;
|
| 1074 |
+
transition: all 0.3s ease !important;
|
| 1075 |
+
}
|
| 1076 |
+
|
| 1077 |
+
.clear-btn:hover {
|
| 1078 |
+
transform: translateY(-2px) !important;
|
| 1079 |
+
box-shadow: 0 8px 20px rgba(255, 87, 34, 0.3) !important;
|
| 1080 |
+
}
|
| 1081 |
+
|
| 1082 |
+
.emergency-notice {
|
| 1083 |
+
background: linear-gradient(135deg, #ffebee 0%, #ffcdd2 100%);
|
| 1084 |
+
border: 2px solid #f44336;
|
| 1085 |
+
border-radius: 15px;
|
| 1086 |
+
padding: 20px;
|
| 1087 |
+
margin: 20px 0;
|
| 1088 |
+
color: #c62828;
|
| 1089 |
+
font-weight: 600;
|
| 1090 |
+
animation: pulse 2s infinite;
|
| 1091 |
+
}
|
| 1092 |
+
|
| 1093 |
+
@keyframes pulse {
|
| 1094 |
+
0% { box-shadow: 0 0 0 0 rgba(244, 67, 54, 0.4); }
|
| 1095 |
+
70% { box-shadow: 0 0 0 10px rgba(244, 67, 54, 0); }
|
| 1096 |
+
100% { box-shadow: 0 0 0 0 rgba(244, 67, 54, 0); }
|
| 1097 |
+
}
|
| 1098 |
+
|
| 1099 |
+
.gaza-context {
|
| 1100 |
+
background: linear-gradient(135deg, #e8f5e8 0%, #c8e6c9 100%);
|
| 1101 |
+
border: 2px solid #4caf50;
|
| 1102 |
+
border-radius: 15px;
|
| 1103 |
+
padding: 20px;
|
| 1104 |
+
margin: 20px 0;
|
| 1105 |
+
color: #2e7d32;
|
| 1106 |
+
font-weight: 500;
|
| 1107 |
+
}
|
| 1108 |
+
|
| 1109 |
+
.sidebar-container {
|
| 1110 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 1111 |
+
border-radius: 15px;
|
| 1112 |
+
padding: 20px;
|
| 1113 |
+
margin: 10px 0;
|
| 1114 |
+
border: 1px solid rgba(0,0,0,0.1);
|
| 1115 |
+
}
|
| 1116 |
+
|
| 1117 |
+
.example-container {
|
| 1118 |
+
background: white;
|
| 1119 |
+
border-radius: 12px;
|
| 1120 |
+
padding: 20px;
|
| 1121 |
+
margin: 15px 0;
|
| 1122 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
|
| 1123 |
+
}
|
| 1124 |
+
|
| 1125 |
+
.progress-container {
|
| 1126 |
+
margin: 15px 0;
|
| 1127 |
+
padding: 10px;
|
| 1128 |
+
background: rgba(255,255,255,0.8);
|
| 1129 |
+
border-radius: 10px;
|
| 1130 |
+
}
|
| 1131 |
+
|
| 1132 |
+
.footer-section {
|
| 1133 |
+
background: linear-gradient(135deg, #37474f 0%, #263238 100%);
|
| 1134 |
+
color: white;
|
| 1135 |
+
border-radius: 15px;
|
| 1136 |
+
padding: 20px;
|
| 1137 |
+
margin-top: 30px;
|
| 1138 |
+
text-align: center;
|
| 1139 |
+
}
|
| 1140 |
"""
|
| 1141 |
|
| 1142 |
+
with gr.Blocks(
|
| 1143 |
+
css=css,
|
| 1144 |
+
title="π₯ Advanced Gaza First Aid Assistant",
|
| 1145 |
+
theme=gr.themes.Soft(
|
| 1146 |
+
primary_hue="blue",
|
| 1147 |
+
secondary_hue="green",
|
| 1148 |
+
neutral_hue="slate"
|
| 1149 |
+
)
|
| 1150 |
+
) as interface:
|
| 1151 |
|
| 1152 |
+
# Header Section
|
| 1153 |
+
with gr.Row(elem_classes=["main-container"]):
|
| 1154 |
+
gr.HTML("""
|
| 1155 |
+
<div class="header-section">
|
| 1156 |
+
<h1 style="margin: 0; font-size: 2.5em; font-weight: 700;">
|
| 1157 |
+
π₯ Advanced Gaza First Aid Assistant
|
| 1158 |
+
</h1>
|
| 1159 |
+
<h2 style="margin: 10px 0 0 0; font-size: 1.2em; font-weight: 400; opacity: 0.9;">
|
| 1160 |
+
AI-Powered Medical Guidance for Gaza Healthcare Workers
|
| 1161 |
+
</h2>
|
| 1162 |
+
<p style="margin: 15px 0 0 0; font-size: 1em; opacity: 0.8;">
|
| 1163 |
+
Enhanced with 768-dimensional medical embeddings β’ Advanced FAISS indexing β’ Real-time safety validation
|
| 1164 |
+
</p>
|
| 1165 |
+
</div>
|
| 1166 |
+
""")
|
| 1167 |
|
| 1168 |
+
# Main Interface
|
| 1169 |
+
with gr.Row(elem_classes=["main-container"]):
|
| 1170 |
+
with gr.Column(scale=2):
|
| 1171 |
+
# Query Input Section
|
| 1172 |
+
with gr.Group(elem_classes=["query-container"]):
|
| 1173 |
+
gr.Markdown("### π©Ί Medical Query Input")
|
| 1174 |
+
query_input = gr.Textbox(
|
| 1175 |
+
label="Describe your medical situation",
|
| 1176 |
+
placeholder="Enter your first aid question or describe the medical emergency...",
|
| 1177 |
+
lines=4,
|
| 1178 |
+
elem_classes=["query-input"]
|
| 1179 |
+
)
|
| 1180 |
+
|
| 1181 |
+
with gr.Row():
|
| 1182 |
+
submit_btn = gr.Button(
|
| 1183 |
+
"π Get Medical Guidance",
|
| 1184 |
+
variant="primary",
|
| 1185 |
+
elem_classes=["submit-btn"],
|
| 1186 |
+
scale=3
|
| 1187 |
+
)
|
| 1188 |
+
clear_btn = gr.Button(
|
| 1189 |
+
"ποΈ Clear",
|
| 1190 |
+
variant="secondary",
|
| 1191 |
+
elem_classes=["clear-btn"],
|
| 1192 |
+
scale=1
|
| 1193 |
+
)
|
| 1194 |
+
|
| 1195 |
+
with gr.Column(scale=1):
|
| 1196 |
+
# Sidebar with Quick Access
|
| 1197 |
+
with gr.Group(elem_classes=["sidebar-container"]):
|
| 1198 |
+
gr.Markdown("""
|
| 1199 |
+
### π― Quick Access Guide
|
| 1200 |
+
|
| 1201 |
+
**π¨ Emergency Priorities:**
|
| 1202 |
+
- Severe bleeding control
|
| 1203 |
+
- Burn treatment protocols
|
| 1204 |
+
- Airway management
|
| 1205 |
+
- Trauma stabilization
|
| 1206 |
+
- Shock prevention
|
| 1207 |
+
|
| 1208 |
+
**π₯ Gaza-Specific Scenarios:**
|
| 1209 |
+
- Limited water situations
|
| 1210 |
+
- Power outage medical care
|
| 1211 |
+
- Supply shortage alternatives
|
| 1212 |
+
- Mass casualty protocols
|
| 1213 |
+
- Improvised medical tools
|
| 1214 |
+
|
| 1215 |
+
**π System Status:**
|
| 1216 |
+
- β
Enhanced embeddings active
|
| 1217 |
+
- β
Advanced indexing enabled
|
| 1218 |
+
- β
Safety validation online
|
| 1219 |
+
- β
Gaza context aware
|
| 1220 |
+
""")
|
| 1221 |
|
| 1222 |
+
# Response Section
|
| 1223 |
+
with gr.Row(elem_classes=["main-container"]):
|
| 1224 |
+
with gr.Column():
|
| 1225 |
+
# Main Response
|
| 1226 |
+
with gr.Group(elem_classes=["response-container"]):
|
| 1227 |
+
gr.Markdown("### π©Ή Medical Guidance Response")
|
| 1228 |
+
response_output = gr.Textbox(
|
| 1229 |
+
label="AI Medical Guidance",
|
| 1230 |
+
lines=15,
|
| 1231 |
+
elem_classes=["response-output"],
|
| 1232 |
+
interactive=False,
|
| 1233 |
+
placeholder="Your medical guidance will appear here..."
|
| 1234 |
+
)
|
| 1235 |
+
|
| 1236 |
+
# Metadata and Status
|
| 1237 |
+
with gr.Row():
|
| 1238 |
+
with gr.Column(scale=1):
|
| 1239 |
+
with gr.Group(elem_classes=["metadata-container"]):
|
| 1240 |
+
metadata_output = gr.Textbox(
|
| 1241 |
+
label="π Response Metadata",
|
| 1242 |
+
lines=2,
|
| 1243 |
+
elem_classes=["metadata-output"],
|
| 1244 |
+
interactive=False,
|
| 1245 |
+
placeholder="Response metadata will appear here..."
|
| 1246 |
+
)
|
| 1247 |
+
|
| 1248 |
+
with gr.Column(scale=1):
|
| 1249 |
+
with gr.Group(elem_classes=["status-container"]):
|
| 1250 |
+
status_output = gr.Textbox(
|
| 1251 |
+
label="π‘οΈ Safety Status",
|
| 1252 |
+
lines=2,
|
| 1253 |
+
elem_classes=["status-output"],
|
| 1254 |
+
interactive=False,
|
| 1255 |
+
placeholder="Safety validation status will appear here..."
|
| 1256 |
+
)
|
| 1257 |
+
|
| 1258 |
+
# Important Notices
|
| 1259 |
+
with gr.Row(elem_classes=["main-container"]):
|
| 1260 |
+
gr.HTML("""
|
| 1261 |
+
<div class="emergency-notice">
|
| 1262 |
+
<h3 style="margin: 0 0 10px 0;">π¨ CRITICAL EMERGENCY DISCLAIMER</h3>
|
| 1263 |
+
<p style="margin: 0; font-size: 1.1em;">
|
| 1264 |
+
For life-threatening emergencies, seek immediate professional medical attention.<br>
|
| 1265 |
+
π <strong>Gaza Emergency Contacts:</strong> Palestinian Red Crescent (101) | Civil Defense (102)
|
| 1266 |
+
</p>
|
| 1267 |
+
</div>
|
| 1268 |
+
""")
|
| 1269 |
+
|
| 1270 |
+
with gr.Row(elem_classes=["main-container"]):
|
| 1271 |
+
gr.HTML("""
|
| 1272 |
+
<div class="gaza-context">
|
| 1273 |
+
<h3 style="margin: 0 0 10px 0;">π Gaza Context Awareness</h3>
|
| 1274 |
+
<p style="margin: 0; font-size: 1em;">
|
| 1275 |
+
This advanced AI system is specifically designed for Gaza's challenging conditions including
|
| 1276 |
+
limited resources, frequent power outages, and restricted medical supply access. All guidance
|
| 1277 |
+
considers these constraints and provides practical alternatives when standard treatments are unavailable.
|
| 1278 |
+
</p>
|
| 1279 |
+
</div>
|
| 1280 |
+
""")
|
| 1281 |
|
| 1282 |
+
# Examples Section
|
| 1283 |
+
with gr.Row(elem_classes=["main-container"]):
|
| 1284 |
+
with gr.Group(elem_classes=["example-container"]):
|
| 1285 |
+
gr.Markdown("### π‘ Example Medical Scenarios")
|
| 1286 |
+
|
| 1287 |
+
example_queries = [
|
| 1288 |
+
"How to treat severe burns when clean water is extremely limited?",
|
| 1289 |
+
"Managing gunshot wounds with only basic household supplies",
|
| 1290 |
+
"Recognizing and treating infection in wounds without antibiotics",
|
| 1291 |
+
"Emergency care for children during extended power outages",
|
| 1292 |
+
"Treating compound fractures without proper medical equipment",
|
| 1293 |
+
"Managing diabetic emergencies when insulin is unavailable",
|
| 1294 |
+
"Stopping arterial bleeding with improvised tourniquets",
|
| 1295 |
+
"Recognizing and treating shock in mass casualty situations",
|
| 1296 |
+
"Airway management for unconscious patients without equipment",
|
| 1297 |
+
"Preventing infection in surgical wounds during siege conditions"
|
| 1298 |
+
]
|
| 1299 |
+
|
| 1300 |
+
gr.Examples(
|
| 1301 |
+
examples=example_queries,
|
| 1302 |
+
inputs=query_input,
|
| 1303 |
+
label="Click any example to try it:",
|
| 1304 |
+
examples_per_page=5
|
| 1305 |
+
)
|
| 1306 |
+
|
| 1307 |
+
# Event Handlers
|
| 1308 |
submit_btn.click(
|
| 1309 |
+
process_medical_query_with_progress,
|
| 1310 |
inputs=query_input,
|
| 1311 |
+
outputs=[response_output, metadata_output, status_output],
|
| 1312 |
+
show_progress=True
|
| 1313 |
)
|
| 1314 |
+
|
| 1315 |
query_input.submit(
|
| 1316 |
+
process_medical_query_with_progress,
|
| 1317 |
inputs=query_input,
|
| 1318 |
+
outputs=[response_output, metadata_output, status_output],
|
| 1319 |
+
show_progress=True
|
| 1320 |
+
)
|
| 1321 |
+
|
| 1322 |
+
clear_btn.click(
|
| 1323 |
+
lambda: ("", "", "", ""),
|
| 1324 |
+
outputs=[query_input, response_output, metadata_output, status_output]
|
| 1325 |
)
|
| 1326 |
+
|
| 1327 |
+
# Footer
|
| 1328 |
+
with gr.Row(elem_classes=["main-container"]):
|
| 1329 |
+
gr.HTML("""
|
| 1330 |
+
<div class="footer-section">
|
| 1331 |
+
<h3 style="margin: 0 0 15px 0;">π¬ Advanced Technical Features</h3>
|
| 1332 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin-bottom: 20px;">
|
| 1333 |
+
<div>
|
| 1334 |
+
<strong>π§ Enhanced AI:</strong><br>
|
| 1335 |
+
768-dimensional medical embeddings<br>
|
| 1336 |
+
Advanced FAISS IVF indexing<br>
|
| 1337 |
+
Optimized LLM quantization
|
| 1338 |
+
</div>
|
| 1339 |
+
<div>
|
| 1340 |
+
<strong>π‘οΈ Safety Systems:</strong><br>
|
| 1341 |
+
Real-time medical validation<br>
|
| 1342 |
+
Contraindication detection<br>
|
| 1343 |
+
Gaza-specific risk assessment
|
| 1344 |
+
</div>
|
| 1345 |
+
<div>
|
| 1346 |
+
<strong>β‘ Performance:</strong><br>
|
| 1347 |
+
Async processing pipeline<br>
|
| 1348 |
+
Intelligent response caching<br>
|
| 1349 |
+
Progressive loading indicators
|
| 1350 |
+
</div>
|
| 1351 |
+
</div>
|
| 1352 |
+
<hr style="border: 1px solid rgba(255,255,255,0.2); margin: 20px 0;">
|
| 1353 |
+
<p style="margin: 0; opacity: 0.8;">
|
| 1354 |
+
<strong>βοΈ Medical Disclaimer:</strong> This AI assistant provides educational guidance based on established medical protocols.
|
| 1355 |
+
It is designed to support, not replace, medical professionals. Always consult qualified healthcare providers for definitive care.
|
| 1356 |
+
</p>
|
| 1357 |
+
</div>
|
| 1358 |
+
""")
|
| 1359 |
|
| 1360 |
return interface
|
| 1361 |
|
| 1362 |
def main():
|
| 1363 |
+
"""Enhanced main function with comprehensive error handling and system monitoring"""
|
| 1364 |
+
logger.info("π Starting Advanced Gaza First Aid Assistant")
|
| 1365 |
+
|
| 1366 |
+
try:
|
| 1367 |
+
# System initialization with detailed logging
|
| 1368 |
+
logger.info("π§ Pre-initializing enhanced RAG system...")
|
| 1369 |
+
system = initialize_enhanced_system()
|
| 1370 |
+
|
| 1371 |
+
# Verify system components
|
| 1372 |
+
logger.info("β
Knowledge base initialized")
|
| 1373 |
+
logger.info("β
Medical fact checker ready")
|
| 1374 |
+
logger.info("β
Enhanced embeddings loaded")
|
| 1375 |
+
logger.info("β
Advanced FAISS indexing active")
|
| 1376 |
+
|
| 1377 |
+
# Create and launch advanced interface
|
| 1378 |
+
logger.info("π¨ Creating advanced Gradio interface...")
|
| 1379 |
+
interface = create_advanced_gradio_interface()
|
| 1380 |
+
|
| 1381 |
+
logger.info("π Launching advanced interface...")
|
| 1382 |
+
interface.launch(
|
| 1383 |
+
server_name="0.0.0.0",
|
| 1384 |
+
server_port=7860,
|
| 1385 |
+
share=False,
|
| 1386 |
+
max_threads=6, # Increased for better async performance
|
| 1387 |
+
show_error=True,
|
| 1388 |
+
quiet=False,
|
| 1389 |
+
favicon_path=None,
|
| 1390 |
+
ssl_verify=False
|
| 1391 |
+
)
|
| 1392 |
+
|
| 1393 |
+
except Exception as e:
|
| 1394 |
+
logger.error(f"β Failed to start Advanced Gaza First Aid Assistant: {e}")
|
| 1395 |
+
print(f"\nπ¨ STARTUP ERROR: {e}")
|
| 1396 |
+
print("\nπ§ Troubleshooting Steps:")
|
| 1397 |
+
print("1. Check if all dependencies are installed: pip install -r requirements.txt")
|
| 1398 |
+
print("2. Ensure sufficient memory is available (minimum 4GB RAM recommended)")
|
| 1399 |
+
print("3. Verify data directory exists and contains medical documents")
|
| 1400 |
+
print("4. Check system logs for detailed error information")
|
| 1401 |
+
print("\nπ For technical support, check the application logs above.")
|
| 1402 |
+
sys.exit(1)
|
| 1403 |
|
| 1404 |
if __name__ == "__main__":
|
| 1405 |
+
main()
|
| 1406 |
+
|