ragflow / api /apps /conversation_app.py
KevinHuSh
Test chat API and refine ppt chunker (#42)
e32ef75
raw
history blame
7.84 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request
from flask_login import login_required
from api.db.services.dialog_service import DialogService, ConversationService
from api.db import LLMType
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.utils.api_utils import get_json_result
from rag.llm import ChatModel
from rag.nlp import retrievaler
from rag.utils import num_tokens_from_string, encoder
@manager.route('/set', methods=['POST'])
@login_required
@validate_request("dialog_id")
def set():
req = request.json
conv_id = req.get("conversation_id")
if conv_id:
del req["conversation_id"]
try:
if not ConversationService.update_by_id(conv_id, req):
return get_data_error_result(retmsg="Conversation not found!")
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(
retmsg="Fail to update a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
try:
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(retmsg="Dialog not found")
conv = {
"id": get_uuid(),
"dialog_id": req["dialog_id"],
"name": "New conversation",
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
}
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
if not e:
return get_data_error_result(retmsg="Fail to new a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/get', methods=['GET'])
@login_required
def get():
conv_id = request.args["conversation_id"]
try:
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(retmsg="Conversation not found!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST'])
@login_required
def rm():
conv_ids = request.json["conversation_ids"]
try:
for cid in conv_ids:
ConversationService.delete_by_id(cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET'])
@login_required
def list():
dialog_id = request.args["dialog_id"]
try:
convs = ConversationService.query(dialog_id=dialog_id)
convs = [d.to_dict() for d in convs]
return get_json_result(data=convs)
except Exception as e:
return server_error_response(e)
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts: total += m["count"]
return total
c = count()
if c < max_length: return c, msg
msg = [m for m in msg if m.role in ["system", "user"]]
c = count()
if c < max_length:return c, msg
msg_ = [m for m in msg[:-1] if m.role == "system"]
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:return c, msg
ll = num_tokens_from_string(msg_[0].content)
l = num_tokens_from_string(msg_[-1].content)
if ll/(ll + l) > 0.8:
m = msg_[0].content
m = encoder.decode(encoder.encode(m)[:max_length-l])
msg[0].content = m
return max_length, msg
m = msg_[1].content
m = encoder.decode(encoder.encode(m)[:max_length-l])
msg[1].content = m
return max_length, msg
@manager.route('/completion', methods=['POST'])
@login_required
@validate_request("dialog_id", "messages")
def completion():
req = request.json
msg = []
for m in req["messages"]:
if m["role"] == "system":continue
if m["role"] == "assistant" and not msg:continue
msg.append({"role": m["role"], "content": m["content"]})
try:
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(retmsg="Dialog not found!")
del req["dialog_id"]
del req["messages"]
return get_json_result(data=chat(dia, msg, **req))
except Exception as e:
return server_error_response(e)
def chat(dialog, messages, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
llm = LLMService.query(llm_name=dialog.llm_id)
if not llm:
raise LookupError("LLM(%s) not found"%dialog.llm_id)
llm = llm[0]
prompt_config = dialog.prompt_config
for p in prompt_config["parameters"]:
if p["key"] == "knowledge":continue
if p["key"] not in kwargs and not p["optional"]:raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
question = messages[-1]["content"]
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold,
dialog.vector_similarity_weight, top=1024, aggs=False)
knowledges = [ck["content_ltks"] for ck in kbinfos["chunks"]]
if not knowledges and prompt_config["empty_response"]:
return {"answer": prompt_config["empty_response"], "retrieval": kbinfos}
kwargs["knowledge"] = "\n".join(knowledges)
gen_conf = dialog.llm_setting[dialog.llm_setting_type]
msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
answer = retrievaler.insert_citations(answer,
[ck["content_ltks"] for ck in kbinfos["chunks"]],
[ck["vector"] for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1-dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
for c in kbinfos["chunks"]:
if c.get("vector"):del c["vector"]
return {"answer": answer, "retrieval": kbinfos}