|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from flask import request
|
|
from flask_login import login_required
|
|
from api.db.services.dialog_service import DialogService, ConversationService
|
|
from api.db import LLMType
|
|
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
|
|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
|
from api.utils import get_uuid
|
|
from api.utils.api_utils import get_json_result
|
|
from rag.llm import ChatModel
|
|
from rag.nlp import retrievaler
|
|
from rag.utils import num_tokens_from_string, encoder
|
|
|
|
|
|
@manager.route('/set', methods=['POST'])
|
|
@login_required
|
|
@validate_request("dialog_id")
|
|
def set():
|
|
req = request.json
|
|
conv_id = req.get("conversation_id")
|
|
if conv_id:
|
|
del req["conversation_id"]
|
|
try:
|
|
if not ConversationService.update_by_id(conv_id, req):
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
e, conv = ConversationService.get_by_id(conv_id)
|
|
if not e:
|
|
return get_data_error_result(
|
|
retmsg="Fail to update a conversation!")
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
try:
|
|
e, dia = DialogService.get_by_id(req["dialog_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Dialog not found")
|
|
conv = {
|
|
"id": get_uuid(),
|
|
"dialog_id": req["dialog_id"],
|
|
"name": "New conversation",
|
|
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
|
|
}
|
|
ConversationService.save(**conv)
|
|
e, conv = ConversationService.get_by_id(conv["id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Fail to new a conversation!")
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/get', methods=['GET'])
|
|
@login_required
|
|
def get():
|
|
conv_id = request.args["conversation_id"]
|
|
try:
|
|
e, conv = ConversationService.get_by_id(conv_id)
|
|
if not e:
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/rm', methods=['POST'])
|
|
@login_required
|
|
def rm():
|
|
conv_ids = request.json["conversation_ids"]
|
|
try:
|
|
for cid in conv_ids:
|
|
ConversationService.delete_by_id(cid)
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
@manager.route('/list', methods=['GET'])
|
|
@login_required
|
|
def list():
|
|
dialog_id = request.args["dialog_id"]
|
|
try:
|
|
convs = ConversationService.query(dialog_id=dialog_id)
|
|
convs = [d.to_dict() for d in convs]
|
|
return get_json_result(data=convs)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
def message_fit_in(msg, max_length=4000):
|
|
def count():
|
|
nonlocal msg
|
|
tks_cnts = []
|
|
for m in msg:tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
|
|
total = 0
|
|
for m in tks_cnts: total += m["count"]
|
|
return total
|
|
|
|
c = count()
|
|
if c < max_length: return c, msg
|
|
msg = [m for m in msg if m.role in ["system", "user"]]
|
|
c = count()
|
|
if c < max_length:return c, msg
|
|
msg_ = [m for m in msg[:-1] if m.role == "system"]
|
|
msg_.append(msg[-1])
|
|
msg = msg_
|
|
c = count()
|
|
if c < max_length:return c, msg
|
|
ll = num_tokens_from_string(msg_[0].content)
|
|
l = num_tokens_from_string(msg_[-1].content)
|
|
if ll/(ll + l) > 0.8:
|
|
m = msg_[0].content
|
|
m = encoder.decode(encoder.encode(m)[:max_length-l])
|
|
msg[0].content = m
|
|
return max_length, msg
|
|
|
|
m = msg_[1].content
|
|
m = encoder.decode(encoder.encode(m)[:max_length-l])
|
|
msg[1].content = m
|
|
return max_length, msg
|
|
|
|
|
|
@manager.route('/completion', methods=['POST'])
|
|
@login_required
|
|
@validate_request("dialog_id", "messages")
|
|
def completion():
|
|
req = request.json
|
|
msg = []
|
|
for m in req["messages"]:
|
|
if m["role"] == "system":continue
|
|
if m["role"] == "assistant" and not msg:continue
|
|
msg.append({"role": m["role"], "content": m["content"]})
|
|
try:
|
|
e, dia = DialogService.get_by_id(req["dialog_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Dialog not found!")
|
|
del req["dialog_id"]
|
|
del req["messages"]
|
|
return get_json_result(data=chat(dia, msg, **req))
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
def chat(dialog, messages, **kwargs):
|
|
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
|
|
llm = LLMService.query(llm_name=dialog.llm_id)
|
|
if not llm:
|
|
raise LookupError("LLM(%s) not found"%dialog.llm_id)
|
|
llm = llm[0]
|
|
prompt_config = dialog.prompt_config
|
|
for p in prompt_config["parameters"]:
|
|
if p["key"] == "knowledge":continue
|
|
if p["key"] not in kwargs and not p["optional"]:raise KeyError("Miss parameter: " + p["key"])
|
|
if p["key"] not in kwargs:
|
|
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
|
|
|
|
question = messages[-1]["content"]
|
|
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
|
|
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
|
|
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold,
|
|
dialog.vector_similarity_weight, top=1024, aggs=False)
|
|
knowledges = [ck["content_ltks"] for ck in kbinfos["chunks"]]
|
|
|
|
if not knowledges and prompt_config["empty_response"]:
|
|
return {"answer": prompt_config["empty_response"], "retrieval": kbinfos}
|
|
|
|
kwargs["knowledge"] = "\n".join(knowledges)
|
|
gen_conf = dialog.llm_setting[dialog.llm_setting_type]
|
|
msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
|
|
used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
|
|
if "max_tokens" in gen_conf:
|
|
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
|
|
answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
|
|
|
answer = retrievaler.insert_citations(answer,
|
|
[ck["content_ltks"] for ck in kbinfos["chunks"]],
|
|
[ck["vector"] for ck in kbinfos["chunks"]],
|
|
embd_mdl,
|
|
tkweight=1-dialog.vector_similarity_weight,
|
|
vtweight=dialog.vector_similarity_weight)
|
|
for c in kbinfos["chunks"]:
|
|
if c.get("vector"):del c["vector"]
|
|
return {"answer": answer, "retrieval": kbinfos} |