# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from flask import request from flask_login import login_required from api.db.services.dialog_service import DialogService, ConversationService from api.db import LLMType from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle from api.utils.api_utils import server_error_response, get_data_error_result, validate_request from api.utils import get_uuid from api.utils.api_utils import get_json_result from rag.llm import ChatModel from rag.nlp import retrievaler from rag.utils import num_tokens_from_string, encoder @manager.route('/set', methods=['POST']) @login_required @validate_request("dialog_id") def set(): req = request.json conv_id = req.get("conversation_id") if conv_id: del req["conversation_id"] try: if not ConversationService.update_by_id(conv_id, req): return get_data_error_result(retmsg="Conversation not found!") e, conv = ConversationService.get_by_id(conv_id) if not e: return get_data_error_result( retmsg="Fail to update a conversation!") conv = conv.to_dict() return get_json_result(data=conv) except Exception as e: return server_error_response(e) try: e, dia = DialogService.get_by_id(req["dialog_id"]) if not e: return get_data_error_result(retmsg="Dialog not found") conv = { "id": get_uuid(), "dialog_id": req["dialog_id"], "name": "New conversation", "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}] } ConversationService.save(**conv) e, conv = ConversationService.get_by_id(conv["id"]) if not e: return get_data_error_result(retmsg="Fail to new a conversation!") conv = conv.to_dict() return get_json_result(data=conv) except Exception as e: return server_error_response(e) @manager.route('/get', methods=['GET']) @login_required def get(): conv_id = request.args["conversation_id"] try: e, conv = ConversationService.get_by_id(conv_id) if not e: return get_data_error_result(retmsg="Conversation not found!") conv = conv.to_dict() return get_json_result(data=conv) except Exception as e: return server_error_response(e) @manager.route('/rm', methods=['POST']) @login_required def rm(): conv_ids = request.json["conversation_ids"] try: for cid in conv_ids: ConversationService.delete_by_id(cid) return get_json_result(data=True) except Exception as e: return server_error_response(e) @manager.route('/list', methods=['GET']) @login_required def list(): dialog_id = request.args["dialog_id"] try: convs = ConversationService.query(dialog_id=dialog_id) convs = [d.to_dict() for d in convs] return get_json_result(data=convs) except Exception as e: return server_error_response(e) def message_fit_in(msg, max_length=4000): def count(): nonlocal msg tks_cnts = [] for m in msg:tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])}) total = 0 for m in tks_cnts: total += m["count"] return total c = count() if c < max_length: return c, msg msg = [m for m in msg if m.role in ["system", "user"]] c = count() if c < max_length:return c, msg msg_ = [m for m in msg[:-1] if m.role == "system"] msg_.append(msg[-1]) msg = msg_ c = count() if c < max_length:return c, msg ll = num_tokens_from_string(msg_[0].content) l = num_tokens_from_string(msg_[-1].content) if ll/(ll + l) > 0.8: m = msg_[0].content m = encoder.decode(encoder.encode(m)[:max_length-l]) msg[0].content = m return max_length, msg m = msg_[1].content m = encoder.decode(encoder.encode(m)[:max_length-l]) msg[1].content = m return max_length, msg @manager.route('/completion', methods=['POST']) @login_required @validate_request("dialog_id", "messages") def completion(): req = request.json msg = [] for m in req["messages"]: if m["role"] == "system":continue if m["role"] == "assistant" and not msg:continue msg.append({"role": m["role"], "content": m["content"]}) try: e, dia = DialogService.get_by_id(req["dialog_id"]) if not e: return get_data_error_result(retmsg="Dialog not found!") del req["dialog_id"] del req["messages"] return get_json_result(data=chat(dia, msg, **req)) except Exception as e: return server_error_response(e) def chat(dialog, messages, **kwargs): assert messages[-1]["role"] == "user", "The last content of this conversation is not from user." llm = LLMService.query(llm_name=dialog.llm_id) if not llm: raise LookupError("LLM(%s) not found"%dialog.llm_id) llm = llm[0] prompt_config = dialog.prompt_config for p in prompt_config["parameters"]: if p["key"] == "knowledge":continue if p["key"] not in kwargs and not p["optional"]:raise KeyError("Miss parameter: " + p["key"]) if p["key"] not in kwargs: prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ") question = messages[-1]["content"] embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING) chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id) kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold, dialog.vector_similarity_weight, top=1024, aggs=False) knowledges = [ck["content_ltks"] for ck in kbinfos["chunks"]] if not knowledges and prompt_config["empty_response"]: return {"answer": prompt_config["empty_response"], "retrieval": kbinfos} kwargs["knowledge"] = "\n".join(knowledges) gen_conf = dialog.llm_setting[dialog.llm_setting_type] msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"] used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97)) if "max_tokens" in gen_conf: gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count) answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf) answer = retrievaler.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=1-dialog.vector_similarity_weight, vtweight=dialog.vector_similarity_weight) for c in kbinfos["chunks"]: if c.get("vector"):del c["vector"] return {"answer": answer, "retrieval": kbinfos}