File size: 7,837 Bytes
4a858d3
484e5ab
4a858d3
 
 
 
 
 
 
 
 
 
 
 
 
 
484e5ab
4a858d3
484e5ab
e32ef75
4a858d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484e5ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a858d3
 
 
 
 
 
 
 
 
 
 
 
 
 
e32ef75
 
4a858d3
 
 
 
 
 
 
 
 
 
34b2ab3
4a858d3
 
e32ef75
4a858d3
 
 
 
 
 
 
34b2ab3
 
484e5ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from flask import request
from flask_login import login_required
from api.db.services.dialog_service import DialogService, ConversationService
from api.db import LLMType
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.utils.api_utils import get_json_result
from rag.llm import ChatModel
from rag.nlp import retrievaler
from rag.utils import num_tokens_from_string, encoder


@manager.route('/set', methods=['POST'])
@login_required
@validate_request("dialog_id")
def set():
    req = request.json
    conv_id = req.get("conversation_id")
    if conv_id:
        del req["conversation_id"]
        try:
            if not ConversationService.update_by_id(conv_id, req):
                return get_data_error_result(retmsg="Conversation not found!")
            e, conv = ConversationService.get_by_id(conv_id)
            if not e:
                return get_data_error_result(
                    retmsg="Fail to update a conversation!")
            conv = conv.to_dict()
            return get_json_result(data=conv)
        except Exception as e:
            return server_error_response(e)

    try:
        e, dia = DialogService.get_by_id(req["dialog_id"])
        if not e:
            return get_data_error_result(retmsg="Dialog not found")
        conv = {
            "id": get_uuid(),
            "dialog_id": req["dialog_id"],
            "name": "New conversation",
            "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
        }
        ConversationService.save(**conv)
        e, conv = ConversationService.get_by_id(conv["id"])
        if not e:
            return get_data_error_result(retmsg="Fail to new a conversation!")
        conv = conv.to_dict()
        return get_json_result(data=conv)
    except Exception as e:
        return server_error_response(e)


@manager.route('/get', methods=['GET'])
@login_required
def get():
    conv_id = request.args["conversation_id"]
    try:
        e, conv = ConversationService.get_by_id(conv_id)
        if not e:
            return get_data_error_result(retmsg="Conversation not found!")
        conv = conv.to_dict()
        return get_json_result(data=conv)
    except Exception as e:
        return server_error_response(e)


@manager.route('/rm', methods=['POST'])
@login_required
def rm():
    conv_ids = request.json["conversation_ids"]
    try:
        for cid in conv_ids:
            ConversationService.delete_by_id(cid)
        return get_json_result(data=True)
    except Exception as e:
        return server_error_response(e)

@manager.route('/list', methods=['GET'])
@login_required
def list():
    dialog_id = request.args["dialog_id"]
    try:
        convs = ConversationService.query(dialog_id=dialog_id)
        convs = [d.to_dict() for d in convs]
        return get_json_result(data=convs)
    except Exception as e:
        return server_error_response(e)


def message_fit_in(msg, max_length=4000):
    def count():
        nonlocal msg
        tks_cnts = []
        for m in msg:tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
        total = 0
        for m in tks_cnts: total += m["count"]
        return total

    c = count()
    if c < max_length: return c, msg
    msg = [m for m in msg if m.role in ["system", "user"]]
    c = count()
    if c < max_length:return c, msg
    msg_ = [m for m in msg[:-1] if m.role == "system"]
    msg_.append(msg[-1])
    msg = msg_
    c = count()
    if c < max_length:return c, msg
    ll = num_tokens_from_string(msg_[0].content)
    l = num_tokens_from_string(msg_[-1].content)
    if ll/(ll + l) > 0.8:
        m = msg_[0].content
        m = encoder.decode(encoder.encode(m)[:max_length-l])
        msg[0].content = m
        return max_length, msg

    m = msg_[1].content
    m = encoder.decode(encoder.encode(m)[:max_length-l])
    msg[1].content = m
    return max_length, msg


@manager.route('/completion', methods=['POST'])
@login_required
@validate_request("dialog_id", "messages")
def completion():
    req = request.json
    msg = []
    for m in req["messages"]:
        if m["role"] == "system":continue
        if m["role"] == "assistant" and not msg:continue
        msg.append({"role": m["role"], "content": m["content"]})
    try:
        e, dia = DialogService.get_by_id(req["dialog_id"])
        if not e:
            return get_data_error_result(retmsg="Dialog not found!")
        del req["dialog_id"]
        del req["messages"]
        return get_json_result(data=chat(dia, msg, **req))
    except Exception as e:
        return server_error_response(e)


def chat(dialog, messages, **kwargs):
    assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
    llm = LLMService.query(llm_name=dialog.llm_id)
    if not llm:
        raise LookupError("LLM(%s) not found"%dialog.llm_id)
    llm = llm[0]
    prompt_config = dialog.prompt_config
    for p in prompt_config["parameters"]:
        if p["key"] == "knowledge":continue
        if p["key"] not in kwargs and not p["optional"]:raise KeyError("Miss parameter: " + p["key"])
        if p["key"] not in kwargs:
            prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")

    question = messages[-1]["content"]
    embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
    chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
    kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold,
                        dialog.vector_similarity_weight, top=1024, aggs=False)
    knowledges = [ck["content_ltks"] for ck in kbinfos["chunks"]]

    if not knowledges and prompt_config["empty_response"]:
        return {"answer": prompt_config["empty_response"], "retrieval": kbinfos}

    kwargs["knowledge"] = "\n".join(knowledges)
    gen_conf = dialog.llm_setting[dialog.llm_setting_type]
    msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
    used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
    if "max_tokens" in gen_conf:
        gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
    answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)

    answer = retrievaler.insert_citations(answer,
                                 [ck["content_ltks"] for ck in kbinfos["chunks"]],
                                 [ck["vector"] for ck in kbinfos["chunks"]],
                                 embd_mdl,
                                 tkweight=1-dialog.vector_similarity_weight,
                                 vtweight=dialog.vector_similarity_weight)
    for c in kbinfos["chunks"]:
        if c.get("vector"):del c["vector"]
    return {"answer": answer, "retrieval": kbinfos}