ragflow / rag /svr /parse_user_docs.py
KevinHuSh
Test APIs and fix bugs (#41)
34b2ab3
raw
history blame
9.75 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import os
import hashlib
import copy
import time
import random
import re
from timeit import default_timer as timer
from rag.llm import EmbeddingModel, CvModel
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
from rag.utils import ELASTICSEARCH
from rag.utils import MINIO
from rag.utils import rmSpace, findMaxTm
from rag.nlp import huchunk, huqie, search
from io import BytesIO
import pandas as pd
from elasticsearch_dsl import Q
from PIL import Image
from rag.parser import (
PdfParser,
DocxParser,
ExcelParser
)
from rag.nlp.huchunk import (
PdfChunker,
DocxChunker,
ExcelChunker,
PptChunker,
TextChunker
)
from api.db import LLMType
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import TenantLLMService
from api.settings import database_logger
from api.utils import get_format_time
from api.utils.file_utils import get_project_base_directory
BATCH_SIZE = 64
PDF = PdfChunker(PdfParser())
DOC = DocxChunker(DocxParser())
EXC = ExcelChunker(ExcelParser())
PPT = PptChunker()
def chuck_doc(name, binary, cvmdl=None):
suff = os.path.split(name)[-1].lower().split(".")[-1]
if suff.find("pdf") >= 0:
return PDF(binary)
if suff.find("doc") >= 0:
return DOC(binary)
if re.match(r"(xlsx|xlsm|xltx|xltm)", suff):
return EXC(binary)
if suff.find("ppt") >= 0:
return PPT(binary)
if cvmdl and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$",
name.lower()):
txt = cvmdl.describe(binary)
field = TextChunker.Fields()
field.text_chunks = [(txt, binary)]
field.table_chunks = []
return field
return TextChunker()(binary)
def collect(comm, mod, tm):
docs = DocumentService.get_newly_uploaded(tm, mod, comm)
if len(docs) == 0:
return pd.DataFrame()
docs = pd.DataFrame(docs)
mtm = docs["update_time"].max()
cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm))
return docs
def set_progress(docid, prog, msg="Processing...", begin=False):
d = {"progress": prog, "progress_msg": msg}
if begin:
d["process_begin_at"] = get_format_time()
try:
DocumentService.update_by_id(
docid, {"progress": prog, "progress_msg": msg})
except Exception as e:
cron_logger.error("set_progress:({}), {}".format(docid, str(e)))
def build(row, cvmdl):
if row["size"] > DOC_MAXIMUM_SIZE:
set_progress(row["id"], -1, "File size exceeds( <= %dMb )" %
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
return []
# res = ELASTICSEARCH.search(Q("term", doc_id=row["id"]))
# if ELASTICSEARCH.getTotal(res) > 0:
# ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
# scripts="""
# if(!ctx._source.kb_id.contains('%s'))
# ctx._source.kb_id.add('%s');
# """ % (str(row["kb_id"]), str(row["kb_id"])),
# idxnm=search.index_name(row["tenant_id"])
# )
# set_progress(row["id"], 1, "Done")
# return []
random.seed(time.time())
set_progress(row["id"], random.randint(0, 20) /
100., "Finished preparing! Start to slice file!", True)
try:
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), cvmdl)
except Exception as e:
if re.search("(No such file|not found)", str(e)):
set_progress(
row["id"], -1, "Can not find file <%s>" %
row["doc_name"])
else:
set_progress(
row["id"], -1, f"Internal server error: %s" %
str(e).replace(
"'", ""))
cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
return []
if not obj.text_chunks and not obj.table_chunks:
set_progress(
row["id"],
1,
"Nothing added! Mostly, file type unsupported yet.")
return []
set_progress(row["id"], random.randint(20, 60) / 100.,
"Finished slicing files. Start to embedding the content.")
doc = {
"doc_id": row["id"],
"kb_id": [str(row["kb_id"])],
"docnm_kwd": os.path.split(row["location"])[-1],
"title_tks": huqie.qie(row["name"])
}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
output_buffer = BytesIO()
docs = []
for txt, img in obj.text_chunks:
d = copy.deepcopy(doc)
md5 = hashlib.md5()
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["content_ltks"] = huqie.qie(txt)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
if not img:
docs.append(d)
continue
if isinstance(img, bytes):
output_buffer = BytesIO(img)
else:
img.save(output_buffer, format='JPEG')
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
docs.append(d)
for arr, img in obj.table_chunks:
for i, txt in enumerate(arr):
d = copy.deepcopy(doc)
d["content_ltks"] = huqie.qie(txt)
md5 = hashlib.md5()
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
if not img:
docs.append(d)
continue
img.save(output_buffer, format='JPEG')
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
docs.append(d)
set_progress(row["id"], random.randint(60, 70) /
100., "Continue embedding the content.")
return docs
def init_kb(row):
idxnm = search.index_name(row["tenant_id"])
if ELASTICSEARCH.indexExist(idxnm):
return
return ELASTICSEARCH.createIdx(idxnm, json.load(
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
def embedding(docs, mdl):
tts, cnts = [rmSpace(d["title_tks"]) for d in docs], [rmSpace(d["content_ltks"]) for d in docs]
tk_count = 0
tts, c = mdl.encode(tts)
tk_count += c
cnts, c = mdl.encode(cnts)
tk_count += c
vects = 0.1 * tts + 0.9 * cnts
assert len(vects) == len(docs)
for i, d in enumerate(docs):
v = vects[i].tolist()
d["q_%d_vec"%len(v)] = v
return tk_count
def main(comm, mod):
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
tm = findMaxTm(tm_fnm)
rows = collect(comm, mod, tm)
if len(rows) == 0:
return
tmf = open(tm_fnm, "a+")
for _, r in rows.iterrows():
embd_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.EMBEDDING)
if not embd_mdl:
set_progress(r["id"], -1, "Can't find embedding model!")
cron_logger.error("Tenant({}) can't find embedding model!".format(r["tenant_id"]))
continue
cv_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.IMAGE2TEXT)
st_tm = timer()
cks = build(r, cv_mdl)
if not cks:
tmf.write(str(r["update_time"]) + "\n")
continue
# TODO: exception handler
## set_progress(r["did"], -1, "ERROR: ")
try:
tk_count = embedding(cks, embd_mdl)
except Exception as e:
set_progress(r["id"], -1, "Embedding error:{}".format(str(e)))
cron_logger.error(str(e))
continue
set_progress(r["id"], random.randint(70, 95) / 100.,
"Finished embedding! Start to build index!")
init_kb(r)
chunk_count = len(set([c["_id"] for c in cks]))
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
if es_r:
set_progress(r["id"], -1, "Index failure!")
cron_logger.error(str(es_r))
else:
set_progress(r["id"], 1., "Done!")
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm)
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
tmf.write(str(r["update_time"]) + "\n")
tmf.close()
if __name__ == "__main__":
peewee_logger = logging.getLogger('peewee')
peewee_logger.propagate = False
peewee_logger.addHandler(database_logger.handlers[0])
peewee_logger.setLevel(database_logger.level)
from mpi4py import MPI
comm = MPI.COMM_WORLD
main(comm.Get_size(), comm.Get_rank())