File size: 9,745 Bytes
3079197
484e5ab
3079197
 
 
 
 
 
 
 
 
 
 
 
 
c372afe
3079197
3198faf
3079197
 
 
 
 
 
 
 
 
 
3198faf
3079197
3198faf
 
3079197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf75d4
 
 
 
 
 
3079197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34b2ab3
3079197
 
 
 
 
 
 
 
 
3198faf
3079197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3198faf
3079197
 
 
 
3198faf
c372afe
 
 
 
 
 
 
 
 
 
 
3079197
 
 
 
 
3198faf
 
3079197
 
 
 
 
 
 
 
 
 
3198faf
 
 
3079197
 
 
 
 
 
 
 
 
 
 
 
 
3198faf
3079197
 
c372afe
3079197
 
 
 
 
 
34b2ab3
3079197
 
 
 
 
 
 
 
3198faf
3079197
3198faf
 
3079197
 
 
c372afe
3079197
 
 
 
 
 
34b2ab3
3079197
 
 
 
 
 
 
 
c372afe
3079197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c372afe
 
3079197
 
 
 
 
3198faf
3079197
 
 
 
 
 
c372afe
3079197
 
 
 
c372afe
3079197
 
 
3198faf
3079197
 
 
 
 
 
 
 
 
 
 
 
 
34b2ab3
3079197
 
 
 
 
 
34b2ab3
3198faf
 
3079197
 
 
 
 
3198faf
 
 
 
 
3079197
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import datetime
import json
import logging
import os
import hashlib
import copy
import time
import random
import re
from timeit import default_timer as timer

from rag.llm import EmbeddingModel, CvModel
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
from rag.utils import ELASTICSEARCH
from rag.utils import MINIO
from rag.utils import rmSpace, findMaxTm

from rag.nlp import huchunk, huqie, search
from io import BytesIO
import pandas as pd
from elasticsearch_dsl import Q
from PIL import Image
from rag.parser import (
    PdfParser,
    DocxParser,
    ExcelParser
)
from rag.nlp.huchunk import (
    PdfChunker,
    DocxChunker,
    ExcelChunker,
    PptChunker,
    TextChunker
)
from api.db import LLMType
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import TenantLLMService
from api.settings import database_logger
from api.utils import get_format_time
from api.utils.file_utils import get_project_base_directory

BATCH_SIZE = 64

PDF = PdfChunker(PdfParser())
DOC = DocxChunker(DocxParser())
EXC = ExcelChunker(ExcelParser())
PPT = PptChunker()


def chuck_doc(name, binary, cvmdl=None):
    suff = os.path.split(name)[-1].lower().split(".")[-1]
    if suff.find("pdf") >= 0:
        return PDF(binary)
    if suff.find("doc") >= 0:
        return DOC(binary)
    if re.match(r"(xlsx|xlsm|xltx|xltm)", suff):
        return EXC(binary)
    if suff.find("ppt") >= 0:
        return PPT(binary)
    if cvmdl and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$",
                     name.lower()):
        txt = cvmdl.describe(binary)
        field = TextChunker.Fields()
        field.text_chunks = [(txt, binary)]
        field.table_chunks = []
        return field

    return TextChunker()(binary)


def collect(comm, mod, tm):
    docs = DocumentService.get_newly_uploaded(tm, mod, comm)
    if len(docs) == 0:
        return pd.DataFrame()
    docs = pd.DataFrame(docs)
    mtm = docs["update_time"].max()
    cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm))
    return docs


def set_progress(docid, prog, msg="Processing...", begin=False):
    d = {"progress": prog, "progress_msg": msg}
    if begin:
        d["process_begin_at"] = get_format_time()
    try:
        DocumentService.update_by_id(
            docid, {"progress": prog, "progress_msg": msg})
    except Exception as e:
        cron_logger.error("set_progress:({}), {}".format(docid, str(e)))


def build(row, cvmdl):
    if row["size"] > DOC_MAXIMUM_SIZE:
        set_progress(row["id"], -1, "File size exceeds( <= %dMb )" %
                     (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
        return []

    # res = ELASTICSEARCH.search(Q("term", doc_id=row["id"]))
    # if ELASTICSEARCH.getTotal(res) > 0:
    #     ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
    #                                       scripts="""
    #                            if(!ctx._source.kb_id.contains('%s'))
    #                              ctx._source.kb_id.add('%s');
    #                            """ % (str(row["kb_id"]), str(row["kb_id"])),
    #         idxnm=search.index_name(row["tenant_id"])
    #     )
    #     set_progress(row["id"], 1, "Done")
    #     return []

    random.seed(time.time())
    set_progress(row["id"], random.randint(0, 20) /
                 100., "Finished preparing! Start to slice file!", True)
    try:
        cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
        obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), cvmdl)
    except Exception as e:
        if re.search("(No such file|not found)", str(e)):
            set_progress(
                row["id"], -1, "Can not find file <%s>" %
                row["doc_name"])
        else:
            set_progress(
                row["id"], -1, f"Internal server error: %s" %
                str(e).replace(
                    "'", ""))

        cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))

        return []

    if not obj.text_chunks and not obj.table_chunks:
        set_progress(
            row["id"],
            1,
            "Nothing added! Mostly, file type unsupported yet.")
        return []

    set_progress(row["id"], random.randint(20, 60) / 100.,
                 "Finished slicing files. Start to embedding the content.")

    doc = {
        "doc_id": row["id"],
        "kb_id": [str(row["kb_id"])],
        "docnm_kwd": os.path.split(row["location"])[-1],
        "title_tks": huqie.qie(row["name"])
    }
    doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
    output_buffer = BytesIO()
    docs = []
    for txt, img in obj.text_chunks:
        d = copy.deepcopy(doc)
        md5 = hashlib.md5()
        md5.update((txt + str(d["doc_id"])).encode("utf-8"))
        d["_id"] = md5.hexdigest()
        d["content_ltks"] = huqie.qie(txt)
        d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
        if not img:
            docs.append(d)
            continue

        if isinstance(img, bytes):
            output_buffer = BytesIO(img)
        else:
            img.save(output_buffer, format='JPEG')

        MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
        d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
        d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
        docs.append(d)

    for arr, img in obj.table_chunks:
        for i, txt in enumerate(arr):
            d = copy.deepcopy(doc)
            d["content_ltks"] = huqie.qie(txt)
            md5 = hashlib.md5()
            md5.update((txt + str(d["doc_id"])).encode("utf-8"))
            d["_id"] = md5.hexdigest()
            if not img:
                docs.append(d)
                continue
            img.save(output_buffer, format='JPEG')
            MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
            d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
            d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
            docs.append(d)
    set_progress(row["id"], random.randint(60, 70) /
                 100., "Continue embedding the content.")

    return docs


def init_kb(row):
    idxnm = search.index_name(row["tenant_id"])
    if ELASTICSEARCH.indexExist(idxnm):
        return
    return ELASTICSEARCH.createIdx(idxnm, json.load(
        open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))


def embedding(docs, mdl):
    tts, cnts = [rmSpace(d["title_tks"]) for d in docs], [rmSpace(d["content_ltks"]) for d in docs]
    tk_count = 0
    tts, c = mdl.encode(tts)
    tk_count += c
    cnts, c = mdl.encode(cnts)
    tk_count += c
    vects = 0.1 * tts + 0.9 * cnts
    assert len(vects) == len(docs)
    for i, d in enumerate(docs):
        v = vects[i].tolist()
        d["q_%d_vec"%len(v)] = v
    return tk_count


def main(comm, mod):
    tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
    tm = findMaxTm(tm_fnm)
    rows = collect(comm, mod, tm)
    if len(rows) == 0:
        return

    tmf = open(tm_fnm, "a+")
    for _, r in rows.iterrows():
        embd_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.EMBEDDING)
        if not embd_mdl:
            set_progress(r["id"], -1, "Can't find embedding model!")
            cron_logger.error("Tenant({}) can't find embedding model!".format(r["tenant_id"]))
            continue
        cv_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.IMAGE2TEXT)
        st_tm = timer()
        cks = build(r, cv_mdl)
        if not cks:
            tmf.write(str(r["update_time"]) + "\n")
            continue
        # TODO: exception handler
        ## set_progress(r["did"], -1, "ERROR: ")
        try:
            tk_count = embedding(cks, embd_mdl)
        except Exception as e:
            set_progress(r["id"], -1, "Embedding error:{}".format(str(e)))
            cron_logger.error(str(e))
            continue

        set_progress(r["id"], random.randint(70, 95) / 100.,
                     "Finished embedding! Start to build index!")
        init_kb(r)
        chunk_count = len(set([c["_id"] for c in cks]))
        es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
        if es_r:
            set_progress(r["id"], -1, "Index failure!")
            cron_logger.error(str(es_r))
        else:
            set_progress(r["id"], 1., "Done!")
            DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm)
            cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))

        tmf.write(str(r["update_time"]) + "\n")
    tmf.close()


if __name__ == "__main__":
    peewee_logger = logging.getLogger('peewee')
    peewee_logger.propagate = False
    peewee_logger.addHandler(database_logger.handlers[0])
    peewee_logger.setLevel(database_logger.level)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    main(comm.Get_size(), comm.Get_rank())