File size: 9,745 Bytes
3079197 484e5ab 3079197 c372afe 3079197 3198faf 3079197 3198faf 3079197 3198faf 3079197 9bf75d4 3079197 34b2ab3 3079197 3198faf 3079197 3198faf 3079197 3198faf c372afe 3079197 3198faf 3079197 3198faf 3079197 3198faf 3079197 c372afe 3079197 34b2ab3 3079197 3198faf 3079197 3198faf 3079197 c372afe 3079197 34b2ab3 3079197 c372afe 3079197 c372afe 3079197 3198faf 3079197 c372afe 3079197 c372afe 3079197 3198faf 3079197 34b2ab3 3079197 34b2ab3 3198faf 3079197 3198faf 3079197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import os
import hashlib
import copy
import time
import random
import re
from timeit import default_timer as timer
from rag.llm import EmbeddingModel, CvModel
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
from rag.utils import ELASTICSEARCH
from rag.utils import MINIO
from rag.utils import rmSpace, findMaxTm
from rag.nlp import huchunk, huqie, search
from io import BytesIO
import pandas as pd
from elasticsearch_dsl import Q
from PIL import Image
from rag.parser import (
PdfParser,
DocxParser,
ExcelParser
)
from rag.nlp.huchunk import (
PdfChunker,
DocxChunker,
ExcelChunker,
PptChunker,
TextChunker
)
from api.db import LLMType
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import TenantLLMService
from api.settings import database_logger
from api.utils import get_format_time
from api.utils.file_utils import get_project_base_directory
BATCH_SIZE = 64
PDF = PdfChunker(PdfParser())
DOC = DocxChunker(DocxParser())
EXC = ExcelChunker(ExcelParser())
PPT = PptChunker()
def chuck_doc(name, binary, cvmdl=None):
suff = os.path.split(name)[-1].lower().split(".")[-1]
if suff.find("pdf") >= 0:
return PDF(binary)
if suff.find("doc") >= 0:
return DOC(binary)
if re.match(r"(xlsx|xlsm|xltx|xltm)", suff):
return EXC(binary)
if suff.find("ppt") >= 0:
return PPT(binary)
if cvmdl and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$",
name.lower()):
txt = cvmdl.describe(binary)
field = TextChunker.Fields()
field.text_chunks = [(txt, binary)]
field.table_chunks = []
return field
return TextChunker()(binary)
def collect(comm, mod, tm):
docs = DocumentService.get_newly_uploaded(tm, mod, comm)
if len(docs) == 0:
return pd.DataFrame()
docs = pd.DataFrame(docs)
mtm = docs["update_time"].max()
cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm))
return docs
def set_progress(docid, prog, msg="Processing...", begin=False):
d = {"progress": prog, "progress_msg": msg}
if begin:
d["process_begin_at"] = get_format_time()
try:
DocumentService.update_by_id(
docid, {"progress": prog, "progress_msg": msg})
except Exception as e:
cron_logger.error("set_progress:({}), {}".format(docid, str(e)))
def build(row, cvmdl):
if row["size"] > DOC_MAXIMUM_SIZE:
set_progress(row["id"], -1, "File size exceeds( <= %dMb )" %
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
return []
# res = ELASTICSEARCH.search(Q("term", doc_id=row["id"]))
# if ELASTICSEARCH.getTotal(res) > 0:
# ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
# scripts="""
# if(!ctx._source.kb_id.contains('%s'))
# ctx._source.kb_id.add('%s');
# """ % (str(row["kb_id"]), str(row["kb_id"])),
# idxnm=search.index_name(row["tenant_id"])
# )
# set_progress(row["id"], 1, "Done")
# return []
random.seed(time.time())
set_progress(row["id"], random.randint(0, 20) /
100., "Finished preparing! Start to slice file!", True)
try:
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), cvmdl)
except Exception as e:
if re.search("(No such file|not found)", str(e)):
set_progress(
row["id"], -1, "Can not find file <%s>" %
row["doc_name"])
else:
set_progress(
row["id"], -1, f"Internal server error: %s" %
str(e).replace(
"'", ""))
cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
return []
if not obj.text_chunks and not obj.table_chunks:
set_progress(
row["id"],
1,
"Nothing added! Mostly, file type unsupported yet.")
return []
set_progress(row["id"], random.randint(20, 60) / 100.,
"Finished slicing files. Start to embedding the content.")
doc = {
"doc_id": row["id"],
"kb_id": [str(row["kb_id"])],
"docnm_kwd": os.path.split(row["location"])[-1],
"title_tks": huqie.qie(row["name"])
}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
output_buffer = BytesIO()
docs = []
for txt, img in obj.text_chunks:
d = copy.deepcopy(doc)
md5 = hashlib.md5()
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["content_ltks"] = huqie.qie(txt)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
if not img:
docs.append(d)
continue
if isinstance(img, bytes):
output_buffer = BytesIO(img)
else:
img.save(output_buffer, format='JPEG')
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
docs.append(d)
for arr, img in obj.table_chunks:
for i, txt in enumerate(arr):
d = copy.deepcopy(doc)
d["content_ltks"] = huqie.qie(txt)
md5 = hashlib.md5()
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
if not img:
docs.append(d)
continue
img.save(output_buffer, format='JPEG')
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
docs.append(d)
set_progress(row["id"], random.randint(60, 70) /
100., "Continue embedding the content.")
return docs
def init_kb(row):
idxnm = search.index_name(row["tenant_id"])
if ELASTICSEARCH.indexExist(idxnm):
return
return ELASTICSEARCH.createIdx(idxnm, json.load(
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
def embedding(docs, mdl):
tts, cnts = [rmSpace(d["title_tks"]) for d in docs], [rmSpace(d["content_ltks"]) for d in docs]
tk_count = 0
tts, c = mdl.encode(tts)
tk_count += c
cnts, c = mdl.encode(cnts)
tk_count += c
vects = 0.1 * tts + 0.9 * cnts
assert len(vects) == len(docs)
for i, d in enumerate(docs):
v = vects[i].tolist()
d["q_%d_vec"%len(v)] = v
return tk_count
def main(comm, mod):
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
tm = findMaxTm(tm_fnm)
rows = collect(comm, mod, tm)
if len(rows) == 0:
return
tmf = open(tm_fnm, "a+")
for _, r in rows.iterrows():
embd_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.EMBEDDING)
if not embd_mdl:
set_progress(r["id"], -1, "Can't find embedding model!")
cron_logger.error("Tenant({}) can't find embedding model!".format(r["tenant_id"]))
continue
cv_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.IMAGE2TEXT)
st_tm = timer()
cks = build(r, cv_mdl)
if not cks:
tmf.write(str(r["update_time"]) + "\n")
continue
# TODO: exception handler
## set_progress(r["did"], -1, "ERROR: ")
try:
tk_count = embedding(cks, embd_mdl)
except Exception as e:
set_progress(r["id"], -1, "Embedding error:{}".format(str(e)))
cron_logger.error(str(e))
continue
set_progress(r["id"], random.randint(70, 95) / 100.,
"Finished embedding! Start to build index!")
init_kb(r)
chunk_count = len(set([c["_id"] for c in cks]))
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
if es_r:
set_progress(r["id"], -1, "Index failure!")
cron_logger.error(str(es_r))
else:
set_progress(r["id"], 1., "Done!")
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm)
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
tmf.write(str(r["update_time"]) + "\n")
tmf.close()
if __name__ == "__main__":
peewee_logger = logging.getLogger('peewee')
peewee_logger.propagate = False
peewee_logger.addHandler(database_logger.handlers[0])
peewee_logger.setLevel(database_logger.level)
from mpi4py import MPI
comm = MPI.COMM_WORLD
main(comm.Get_size(), comm.Get_rank())
|