KevinHuSh
commited on
Commit
·
34b2ab3
1
Parent(s):
484e5ab
Test APIs and fix bugs (#41)
Browse files- api/apps/chunk_app.py +1 -1
- api/apps/conversation_app.py +5 -3
- api/apps/document_app.py +7 -3
- api/apps/llm_app.py +1 -1
- api/db/db_models.py +2 -2
- api/db/services/llm_service.py +1 -1
- api/utils/file_utils.py +1 -1
- rag/llm/chat_model.py +14 -6
- rag/llm/cv_model.py +3 -1
- rag/nlp/search.py +6 -3
- rag/svr/parse_user_docs.py +5 -5
api/apps/chunk_app.py
CHANGED
@@ -214,7 +214,7 @@ def retrieval_test():
|
|
214 |
question = req["question"]
|
215 |
kb_id = req["kb_id"]
|
216 |
doc_ids = req.get("doc_ids", [])
|
217 |
-
similarity_threshold = float(req.get("similarity_threshold", 0.
|
218 |
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
219 |
top = int(req.get("top", 1024))
|
220 |
try:
|
|
|
214 |
question = req["question"]
|
215 |
kb_id = req["kb_id"]
|
216 |
doc_ids = req.get("doc_ids", [])
|
217 |
+
similarity_threshold = float(req.get("similarity_threshold", 0.2))
|
218 |
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
219 |
top = int(req.get("top", 1024))
|
220 |
try:
|
api/apps/conversation_app.py
CHANGED
@@ -170,7 +170,7 @@ def chat(dialog, messages, **kwargs):
|
|
170 |
if p["key"] not in kwargs:
|
171 |
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
|
172 |
|
173 |
-
model_config = TenantLLMService.get_api_key(dialog.tenant_id,
|
174 |
if not model_config: raise LookupError("LLM({}) API key not found".format(dialog.llm_id))
|
175 |
|
176 |
question = messages[-1]["content"]
|
@@ -186,10 +186,10 @@ def chat(dialog, messages, **kwargs):
|
|
186 |
kwargs["knowledge"] = "\n".join(knowledges)
|
187 |
gen_conf = dialog.llm_setting[dialog.llm_setting_type]
|
188 |
msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
|
189 |
-
used_token_count = message_fit_in(msg, int(llm.max_tokens * 0.97))
|
190 |
if "max_tokens" in gen_conf:
|
191 |
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
|
192 |
-
mdl = ChatModel[model_config.llm_factory](model_config
|
193 |
answer = mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
194 |
|
195 |
answer = retrievaler.insert_citations(answer,
|
@@ -198,4 +198,6 @@ def chat(dialog, messages, **kwargs):
|
|
198 |
embd_mdl,
|
199 |
tkweight=1-dialog.vector_similarity_weight,
|
200 |
vtweight=dialog.vector_similarity_weight)
|
|
|
|
|
201 |
return {"answer": answer, "retrieval": kbinfos}
|
|
|
170 |
if p["key"] not in kwargs:
|
171 |
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
|
172 |
|
173 |
+
model_config = TenantLLMService.get_api_key(dialog.tenant_id, dialog.llm_id)
|
174 |
if not model_config: raise LookupError("LLM({}) API key not found".format(dialog.llm_id))
|
175 |
|
176 |
question = messages[-1]["content"]
|
|
|
186 |
kwargs["knowledge"] = "\n".join(knowledges)
|
187 |
gen_conf = dialog.llm_setting[dialog.llm_setting_type]
|
188 |
msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
|
189 |
+
used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
|
190 |
if "max_tokens" in gen_conf:
|
191 |
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
|
192 |
+
mdl = ChatModel[model_config.llm_factory](model_config.api_key, dialog.llm_id)
|
193 |
answer = mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
194 |
|
195 |
answer = retrievaler.insert_citations(answer,
|
|
|
198 |
embd_mdl,
|
199 |
tkweight=1-dialog.vector_similarity_weight,
|
200 |
vtweight=dialog.vector_similarity_weight)
|
201 |
+
for c in kbinfos["chunks"]:
|
202 |
+
if c.get("vector"):del c["vector"]
|
203 |
return {"answer": answer, "retrieval": kbinfos}
|
api/apps/document_app.py
CHANGED
@@ -11,7 +11,8 @@
|
|
11 |
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License
|
|
|
15 |
#
|
16 |
import base64
|
17 |
import pathlib
|
@@ -65,7 +66,7 @@ def upload():
|
|
65 |
while MINIO.obj_exist(kb_id, location):
|
66 |
location += "_"
|
67 |
blob = request.files['file'].read()
|
68 |
-
MINIO.put(kb_id,
|
69 |
doc = DocumentService.insert({
|
70 |
"id": get_uuid(),
|
71 |
"kb_id": kb.id,
|
@@ -188,7 +189,10 @@ def rm():
|
|
188 |
e, doc = DocumentService.get_by_id(req["doc_id"])
|
189 |
if not e:
|
190 |
return get_data_error_result(retmsg="Document not found!")
|
191 |
-
|
|
|
|
|
|
|
192 |
|
193 |
DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, 0)
|
194 |
if not DocumentService.delete_by_id(req["doc_id"]):
|
|
|
11 |
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
#
|
16 |
#
|
17 |
import base64
|
18 |
import pathlib
|
|
|
66 |
while MINIO.obj_exist(kb_id, location):
|
67 |
location += "_"
|
68 |
blob = request.files['file'].read()
|
69 |
+
MINIO.put(kb_id, location, blob)
|
70 |
doc = DocumentService.insert({
|
71 |
"id": get_uuid(),
|
72 |
"kb_id": kb.id,
|
|
|
189 |
e, doc = DocumentService.get_by_id(req["doc_id"])
|
190 |
if not e:
|
191 |
return get_data_error_result(retmsg="Document not found!")
|
192 |
+
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
193 |
+
if not tenant_id:
|
194 |
+
return get_data_error_result(retmsg="Tenant not found!")
|
195 |
+
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
|
196 |
|
197 |
DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, 0)
|
198 |
if not DocumentService.delete_by_id(req["doc_id"]):
|
api/apps/llm_app.py
CHANGED
@@ -75,7 +75,7 @@ def list():
|
|
75 |
llms = LLMService.get_all()
|
76 |
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value]
|
77 |
for m in llms:
|
78 |
-
m["available"] = m
|
79 |
|
80 |
res = {}
|
81 |
for m in llms:
|
|
|
75 |
llms = LLMService.get_all()
|
76 |
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value]
|
77 |
for m in llms:
|
78 |
+
m["available"] = m["llm_name"] in mdlnms
|
79 |
|
80 |
res = {}
|
81 |
for m in llms:
|
api/db/db_models.py
CHANGED
@@ -469,7 +469,7 @@ class Knowledgebase(DataBaseModel):
|
|
469 |
doc_num = IntegerField(default=0)
|
470 |
token_num = IntegerField(default=0)
|
471 |
chunk_num = IntegerField(default=0)
|
472 |
-
similarity_threshold = FloatField(default=0.
|
473 |
vector_similarity_weight = FloatField(default=0.3)
|
474 |
|
475 |
parser_id = CharField(max_length=32, null=False, help_text="default parser ID")
|
@@ -521,7 +521,7 @@ class Dialog(DataBaseModel):
|
|
521 |
prompt_config = JSONField(null=False, default={"system": "", "prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
|
522 |
"parameters": [], "empty_response": "Sorry! 知识库中未找到相关内容!"})
|
523 |
|
524 |
-
similarity_threshold = FloatField(default=0.
|
525 |
vector_similarity_weight = FloatField(default=0.3)
|
526 |
top_n = IntegerField(default=6)
|
527 |
|
|
|
469 |
doc_num = IntegerField(default=0)
|
470 |
token_num = IntegerField(default=0)
|
471 |
chunk_num = IntegerField(default=0)
|
472 |
+
similarity_threshold = FloatField(default=0.2)
|
473 |
vector_similarity_weight = FloatField(default=0.3)
|
474 |
|
475 |
parser_id = CharField(max_length=32, null=False, help_text="default parser ID")
|
|
|
521 |
prompt_config = JSONField(null=False, default={"system": "", "prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
|
522 |
"parameters": [], "empty_response": "Sorry! 知识库中未找到相关内容!"})
|
523 |
|
524 |
+
similarity_threshold = FloatField(default=0.2)
|
525 |
vector_similarity_weight = FloatField(default=0.3)
|
526 |
top_n = IntegerField(default=6)
|
527 |
|
api/db/services/llm_service.py
CHANGED
@@ -63,7 +63,7 @@ class TenantLLMService(CommonService):
|
|
63 |
|
64 |
model_config = cls.get_api_key(tenant_id, mdlnm)
|
65 |
if not model_config: raise LookupError("Model({}) not found".format(mdlnm))
|
66 |
-
model_config = model_config
|
67 |
if llm_type == LLMType.EMBEDDING.value:
|
68 |
if model_config["llm_factory"] not in EmbeddingModel: return
|
69 |
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
|
|
|
63 |
|
64 |
model_config = cls.get_api_key(tenant_id, mdlnm)
|
65 |
if not model_config: raise LookupError("Model({}) not found".format(mdlnm))
|
66 |
+
model_config = model_config.to_dict()
|
67 |
if llm_type == LLMType.EMBEDDING.value:
|
68 |
if model_config["llm_factory"] not in EmbeddingModel: return
|
69 |
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
|
api/utils/file_utils.py
CHANGED
@@ -143,7 +143,7 @@ def filename_type(filename):
|
|
143 |
if re.match(r".*\.pdf$", filename):
|
144 |
return FileType.PDF.value
|
145 |
|
146 |
-
if re.match(r".*\.(doc|ppt|yml|xml|htm|json|csv|txt|ini|xsl|wps|rtf|hlp|pages|numbers|key|md)$", filename):
|
147 |
return FileType.DOC.value
|
148 |
|
149 |
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus|mp3)$", filename):
|
|
|
143 |
if re.match(r".*\.pdf$", filename):
|
144 |
return FileType.PDF.value
|
145 |
|
146 |
+
if re.match(r".*\.(docx|doc|ppt|yml|xml|htm|json|csv|txt|ini|xsl|wps|rtf|hlp|pages|numbers|key|md)$", filename):
|
147 |
return FileType.DOC.value
|
148 |
|
149 |
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus|mp3)$", filename):
|
rag/llm/chat_model.py
CHANGED
@@ -19,31 +19,39 @@ import os
|
|
19 |
|
20 |
|
21 |
class Base(ABC):
|
|
|
|
|
|
|
22 |
def chat(self, system, history, gen_conf):
|
23 |
raise NotImplementedError("Please implement encode method!")
|
24 |
|
25 |
|
26 |
class GptTurbo(Base):
|
27 |
-
def __init__(self):
|
28 |
-
self.client = OpenAI(api_key=
|
|
|
29 |
|
30 |
def chat(self, system, history, gen_conf):
|
31 |
history.insert(0, {"role": "system", "content": system})
|
32 |
res = self.client.chat.completions.create(
|
33 |
-
model=
|
34 |
messages=history,
|
35 |
**gen_conf)
|
36 |
return res.choices[0].message.content.strip()
|
37 |
|
38 |
|
|
|
39 |
class QWenChat(Base):
|
|
|
|
|
|
|
|
|
|
|
40 |
def chat(self, system, history, gen_conf):
|
41 |
from http import HTTPStatus
|
42 |
-
from dashscope import Generation
|
43 |
-
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
|
44 |
history.insert(0, {"role": "system", "content": system})
|
45 |
response = Generation.call(
|
46 |
-
|
47 |
messages=history,
|
48 |
result_format='message'
|
49 |
)
|
|
|
19 |
|
20 |
|
21 |
class Base(ABC):
|
22 |
+
def __init__(self, key, model_name):
|
23 |
+
pass
|
24 |
+
|
25 |
def chat(self, system, history, gen_conf):
|
26 |
raise NotImplementedError("Please implement encode method!")
|
27 |
|
28 |
|
29 |
class GptTurbo(Base):
|
30 |
+
def __init__(self, key, model_name="gpt-3.5-turbo"):
|
31 |
+
self.client = OpenAI(api_key=key)
|
32 |
+
self.model_name = model_name
|
33 |
|
34 |
def chat(self, system, history, gen_conf):
|
35 |
history.insert(0, {"role": "system", "content": system})
|
36 |
res = self.client.chat.completions.create(
|
37 |
+
model=self.model_name,
|
38 |
messages=history,
|
39 |
**gen_conf)
|
40 |
return res.choices[0].message.content.strip()
|
41 |
|
42 |
|
43 |
+
from dashscope import Generation
|
44 |
class QWenChat(Base):
|
45 |
+
def __init__(self, key, model_name=Generation.Models.qwen_turbo):
|
46 |
+
import dashscope
|
47 |
+
dashscope.api_key = key
|
48 |
+
self.model_name = model_name
|
49 |
+
|
50 |
def chat(self, system, history, gen_conf):
|
51 |
from http import HTTPStatus
|
|
|
|
|
52 |
history.insert(0, {"role": "system", "content": system})
|
53 |
response = Generation.call(
|
54 |
+
self.model_name,
|
55 |
messages=history,
|
56 |
result_format='message'
|
57 |
)
|
rag/llm/cv_model.py
CHANGED
@@ -28,6 +28,8 @@ class Base(ABC):
|
|
28 |
raise NotImplementedError("Please implement encode method!")
|
29 |
|
30 |
def image2base64(self, image):
|
|
|
|
|
31 |
if isinstance(image, BytesIO):
|
32 |
return base64.b64encode(image.getvalue()).decode("utf-8")
|
33 |
buffered = BytesIO()
|
@@ -59,7 +61,7 @@ class Base(ABC):
|
|
59 |
|
60 |
class GptV4(Base):
|
61 |
def __init__(self, key, model_name="gpt-4-vision-preview"):
|
62 |
-
self.client = OpenAI(key)
|
63 |
self.model_name = model_name
|
64 |
|
65 |
def describe(self, image, max_tokens=300):
|
|
|
28 |
raise NotImplementedError("Please implement encode method!")
|
29 |
|
30 |
def image2base64(self, image):
|
31 |
+
if isinstance(image, bytes):
|
32 |
+
return base64.b64encode(image).decode("utf-8")
|
33 |
if isinstance(image, BytesIO):
|
34 |
return base64.b64encode(image.getvalue()).decode("utf-8")
|
35 |
buffered = BytesIO()
|
|
|
61 |
|
62 |
class GptV4(Base):
|
63 |
def __init__(self, key, model_name="gpt-4-vision-preview"):
|
64 |
+
self.client = OpenAI(api_key = key)
|
65 |
self.model_name = model_name
|
66 |
|
67 |
def describe(self, image, max_tokens=300):
|
rag/nlp/search.py
CHANGED
@@ -187,9 +187,10 @@ class Dealer:
|
|
187 |
if len(t) < 5: continue
|
188 |
idx.append(i)
|
189 |
pieces_.append(t)
|
|
|
190 |
if not pieces_: return answer
|
191 |
|
192 |
-
ans_v = embd_mdl.encode(pieces_)
|
193 |
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
|
194 |
len(ans_v[0]), len(chunk_v[0]))
|
195 |
|
@@ -219,7 +220,7 @@ class Dealer:
|
|
219 |
Dealer.trans2floats(
|
220 |
sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
|
221 |
if not ins_embd:
|
222 |
-
return []
|
223 |
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
|
224 |
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
|
225 |
ins_embd,
|
@@ -235,6 +236,8 @@ class Dealer:
|
|
235 |
|
236 |
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
|
237 |
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
|
|
|
|
|
238 |
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
|
239 |
"question": question, "vector": True,
|
240 |
"similarity": similarity_threshold}
|
@@ -243,7 +246,7 @@ class Dealer:
|
|
243 |
sim, tsim, vsim = self.rerank(
|
244 |
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
|
245 |
idx = np.argsort(sim * -1)
|
246 |
-
|
247 |
dim = len(sres.query_vector)
|
248 |
start_idx = (page - 1) * page_size
|
249 |
for i in idx:
|
|
|
187 |
if len(t) < 5: continue
|
188 |
idx.append(i)
|
189 |
pieces_.append(t)
|
190 |
+
es_logger.info("{} => {}".format(answer, pieces_))
|
191 |
if not pieces_: return answer
|
192 |
|
193 |
+
ans_v, c = embd_mdl.encode(pieces_)
|
194 |
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
|
195 |
len(ans_v[0]), len(chunk_v[0]))
|
196 |
|
|
|
220 |
Dealer.trans2floats(
|
221 |
sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
|
222 |
if not ins_embd:
|
223 |
+
return [], [], []
|
224 |
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
|
225 |
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
|
226 |
ins_embd,
|
|
|
236 |
|
237 |
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
|
238 |
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
|
239 |
+
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
240 |
+
if not question: return ranks
|
241 |
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
|
242 |
"question": question, "vector": True,
|
243 |
"similarity": similarity_threshold}
|
|
|
246 |
sim, tsim, vsim = self.rerank(
|
247 |
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
|
248 |
idx = np.argsort(sim * -1)
|
249 |
+
|
250 |
dim = len(sres.query_vector)
|
251 |
start_idx = (page - 1) * page_size
|
252 |
for i in idx:
|
rag/svr/parse_user_docs.py
CHANGED
@@ -78,6 +78,7 @@ def chuck_doc(name, binary, cvmdl=None):
|
|
78 |
field = TextChunker.Fields()
|
79 |
field.text_chunks = [(txt, binary)]
|
80 |
field.table_chunks = []
|
|
|
81 |
|
82 |
return TextChunker()(binary)
|
83 |
|
@@ -161,9 +162,9 @@ def build(row, cvmdl):
|
|
161 |
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
162 |
output_buffer = BytesIO()
|
163 |
docs = []
|
164 |
-
md5 = hashlib.md5()
|
165 |
for txt, img in obj.text_chunks:
|
166 |
d = copy.deepcopy(doc)
|
|
|
167 |
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
168 |
d["_id"] = md5.hexdigest()
|
169 |
d["content_ltks"] = huqie.qie(txt)
|
@@ -186,6 +187,7 @@ def build(row, cvmdl):
|
|
186 |
for i, txt in enumerate(arr):
|
187 |
d = copy.deepcopy(doc)
|
188 |
d["content_ltks"] = huqie.qie(txt)
|
|
|
189 |
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
190 |
d["_id"] = md5.hexdigest()
|
191 |
if not img:
|
@@ -226,9 +228,6 @@ def embedding(docs, mdl):
|
|
226 |
|
227 |
|
228 |
def main(comm, mod):
|
229 |
-
global model
|
230 |
-
from rag.llm import HuEmbedding
|
231 |
-
model = HuEmbedding()
|
232 |
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
|
233 |
tm = findMaxTm(tm_fnm)
|
234 |
rows = collect(comm, mod, tm)
|
@@ -260,13 +259,14 @@ def main(comm, mod):
|
|
260 |
set_progress(r["id"], random.randint(70, 95) / 100.,
|
261 |
"Finished embedding! Start to build index!")
|
262 |
init_kb(r)
|
|
|
263 |
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
|
264 |
if es_r:
|
265 |
set_progress(r["id"], -1, "Index failure!")
|
266 |
cron_logger.error(str(es_r))
|
267 |
else:
|
268 |
set_progress(r["id"], 1., "Done!")
|
269 |
-
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count,
|
270 |
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
271 |
|
272 |
tmf.write(str(r["update_time"]) + "\n")
|
|
|
78 |
field = TextChunker.Fields()
|
79 |
field.text_chunks = [(txt, binary)]
|
80 |
field.table_chunks = []
|
81 |
+
return field
|
82 |
|
83 |
return TextChunker()(binary)
|
84 |
|
|
|
162 |
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
163 |
output_buffer = BytesIO()
|
164 |
docs = []
|
|
|
165 |
for txt, img in obj.text_chunks:
|
166 |
d = copy.deepcopy(doc)
|
167 |
+
md5 = hashlib.md5()
|
168 |
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
169 |
d["_id"] = md5.hexdigest()
|
170 |
d["content_ltks"] = huqie.qie(txt)
|
|
|
187 |
for i, txt in enumerate(arr):
|
188 |
d = copy.deepcopy(doc)
|
189 |
d["content_ltks"] = huqie.qie(txt)
|
190 |
+
md5 = hashlib.md5()
|
191 |
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
192 |
d["_id"] = md5.hexdigest()
|
193 |
if not img:
|
|
|
228 |
|
229 |
|
230 |
def main(comm, mod):
|
|
|
|
|
|
|
231 |
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
|
232 |
tm = findMaxTm(tm_fnm)
|
233 |
rows = collect(comm, mod, tm)
|
|
|
259 |
set_progress(r["id"], random.randint(70, 95) / 100.,
|
260 |
"Finished embedding! Start to build index!")
|
261 |
init_kb(r)
|
262 |
+
chunk_count = len(set([c["_id"] for c in cks]))
|
263 |
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
|
264 |
if es_r:
|
265 |
set_progress(r["id"], -1, "Index failure!")
|
266 |
cron_logger.error(str(es_r))
|
267 |
else:
|
268 |
set_progress(r["id"], 1., "Done!")
|
269 |
+
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm)
|
270 |
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
271 |
|
272 |
tmf.write(str(r["update_time"]) + "\n")
|