File size: 16,662 Bytes
7dd2893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
3245107
 
c372afe
3079197
b691127
3245107
b691127
3245107
d0db329
3198faf
d0db329
3fc700a
3245107
b691127
 
 
3245107
 
 
d0db329
eae0334
 
 
 
 
 
 
3245107
b691127
 
e23293e
 
 
b691127
 
 
 
 
 
 
 
 
 
28a7a7b
b691127
 
 
 
f05eb1d
b691127
 
3245107
d0db329
b085dec
c037a22
b691127
 
afeb6cb
be98b1d
f539fab
b691127
3245107
b691127
 
d0db329
b691127
be98b1d
 
b691127
 
 
8bc2fc9
b691127
 
 
 
 
 
 
8bc2fc9
64a0633
b691127
 
 
 
 
 
 
 
 
8bc2fc9
b691127
 
 
 
4fd5400
b691127
 
 
8bc2fc9
b691127
 
 
1b2aab6
b691127
 
 
 
 
 
8bc2fc9
b691127
 
 
 
3245107
b691127
 
d0db329
 
b691127
 
 
3245107
 
 
 
 
 
e32ef75
1ed30a6
4c52eb9
6d597a0
 
08bab63
 
 
 
 
 
 
 
79ada0b
08bab63
79ada0b
 
 
08bab63
79ada0b
 
 
 
08bab63
 
 
 
4a858d3
004756c
4a858d3
 
 
 
 
e32ef75
 
4a858d3
 
8bc2fc9
e32ef75
7e1a9f0
3245107
e32ef75
4a858d3
6d597a0
d0db329
1b2aab6
79ada0b
4a858d3
3a31a8a
8ee4f9f
3a31a8a
 
 
cfd6ece
1b2aab6
3a31a8a
 
 
8bc2fc9
3a31a8a
 
 
 
 
3245107
4a858d3
cfd888e
e32ef75
4a858d3
e32ef75
 
 
 
cfd888e
79ada0b
 
 
 
cfd888e
 
3245107
365a2ed
3245107
e32ef75
 
08bab63
b691127
 
 
 
f539fab
b691127
 
 
 
 
f539fab
d0db329
34b2ab3
d54aa01
 
 
 
 
 
1b2aab6
 
2d7e5db
d54aa01
2d7e5db
d54aa01
 
9bf75d4
4a858d3
08bab63
4a858d3
f539fab
 
3245107
c037a22
 
 
 
 
 
 
 
 
1b2aab6
 
c037a22
 
 
 
 
e6fc1a9
c037a22
 
 
4a858d3
 
 
1b2aab6
 
4a858d3
95863fc
82bdd9f
34b2ab3
e32ef75
 
95863fc
6d597a0
770b18a
b085dec
c037a22
 
95863fc
6d597a0
 
 
95863fc
 
 
 
b691127
6d597a0
3245107
6d597a0
 
 
 
 
 
 
 
c037a22
6d597a0
 
34b2ab3
2d7e5db
 
 
4a858d3
b691127
 
4a858d3
2d7e5db
4a858d3
365a2ed
4a858d3
 
 
 
b691127
 
 
be98b1d
4a858d3
 
b691127
 
 
4a858d3
b691127
 
 
4a858d3
 
 
b691127
be98b1d
4a858d3
f539fab
6d597a0
 
 
 
4a858d3
 
5e0a689
 
79ada0b
 
 
 
 
c372afe
4a858d3
c5ea37c
a8294f2
b691127
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import logging
import re
from dataclasses import dataclass

from rag.utils import rmSpace
from rag.nlp import rag_tokenizer, query
import numpy as np
from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr


def index_name(uid): return f"ragflow_{uid}"


class Dealer:
    def __init__(self, dataStore: DocStoreConnection):
        self.qryr = query.FulltextQueryer()
        self.dataStore = dataStore

    @dataclass
    class SearchResult:
        total: int
        ids: list[str]
        query_vector: list[float] | None = None
        field: dict | None = None
        highlight: dict | None = None
        aggregation: list | dict | None = None
        keywords: list[str] | None = None
        group_docs: list[list] | None = None

    def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1):
        qv, _ = emb_mdl.encode_queries(txt)
        shape = np.array(qv).shape
        if len(shape) > 1:
            raise Exception(f"Dealer.get_vector returned array's shape {shape} doesn't match expectation(exact one dimension).")
        embedding_data = [float(v) for v in qv]
        vector_column_name = f"q_{len(embedding_data)}_vec"
        return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity})

    def get_filters(self, req):
        condition = dict()
        for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items():
            if key in req and req[key] is not None:
                condition[field] = req[key]
        # TODO(yzc): `available_int` is nullable however infinity doesn't support nullable columns.
        for key in ["knowledge_graph_kwd", "available_int"]:
            if key in req and req[key] is not None:
                condition[key] = req[key]
        return condition

    def search(self, req, idx_names: str | list[str], kb_ids: list[str], emb_mdl=None, highlight = False):
        filters = self.get_filters(req)
        orderBy = OrderByExpr()

        pg = int(req.get("page", 1)) - 1
        topk = int(req.get("topk", 1024))
        ps = int(req.get("size", topk))
        offset, limit = pg * ps, (pg + 1) * ps

        src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", "position_int",
                                 "doc_id", "page_num_int", "top_int", "create_timestamp_flt", "knowledge_graph_kwd", "question_kwd", "question_tks",
                                 "available_int", "content_with_weight", "pagerank_fea"])
        kwds = set([])

        qst = req.get("question", "")
        q_vec = []
        if not qst:
            if req.get("sort"):
                orderBy.asc("page_num_int")
                orderBy.asc("top_int")
                orderBy.desc("create_timestamp_flt")
            res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids)
            total=self.dataStore.getTotal(res)
            logging.debug("Dealer.search TOTAL: {}".format(total))
        else:
            highlightFields = ["content_ltks", "title_tks"] if highlight else []
            matchText, keywords = self.qryr.question(qst, min_match=0.3)
            if emb_mdl is None:
                matchExprs = [matchText]
                res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
                total=self.dataStore.getTotal(res)
                logging.debug("Dealer.search TOTAL: {}".format(total))
            else:
                matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1))
                q_vec = matchDense.embedding_data
                src.append(f"q_{len(q_vec)}_vec")

                fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05, 0.95"})
                matchExprs = [matchText, matchDense, fusionExpr]

                res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
                total=self.dataStore.getTotal(res)
                logging.debug("Dealer.search TOTAL: {}".format(total))

                # If result is empty, try again with lower min_match
                if total == 0:
                    matchText, _ = self.qryr.question(qst, min_match=0.1)
                    filters.pop("doc_ids", None)
                    matchDense.extra_options["similarity"] = 0.17
                    res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr], orderBy, offset, limit, idx_names, kb_ids)
                    total=self.dataStore.getTotal(res)
                    logging.debug("Dealer.search 2 TOTAL: {}".format(total))

            for k in keywords:
                kwds.add(k)
                for kk in rag_tokenizer.fine_grained_tokenize(k).split():
                    if len(kk) < 2:
                        continue
                    if kk in kwds:
                        continue
                    kwds.add(kk)

        logging.debug(f"TOTAL: {total}")
        ids=self.dataStore.getChunkIds(res)
        keywords=list(kwds)
        highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight")
        aggs = self.dataStore.getAggregation(res, "docnm_kwd")
        return self.SearchResult(
            total=total,
            ids=ids,
            query_vector=q_vec,
            aggregation=aggs,
            highlight=highlight,
            field=self.dataStore.getFields(res, src),
            keywords=keywords
        )

    @staticmethod
    def trans2floats(txt):
        return [float(t) for t in txt.split("\t")]

    def insert_citations(self, answer, chunks, chunk_v,
                         embd_mdl, tkweight=0.1, vtweight=0.9):
        assert len(chunks) == len(chunk_v)
        if not chunks:
            return answer, set([])
        pieces = re.split(r"(```)", answer)
        if len(pieces) >= 3:
            i = 0
            pieces_ = []
            while i < len(pieces):
                if pieces[i] == "```":
                    st = i
                    i += 1
                    while i < len(pieces) and pieces[i] != "```":
                        i += 1
                    if i < len(pieces):
                        i += 1
                    pieces_.append("".join(pieces[st: i]) + "\n")
                else:
                    pieces_.extend(
                        re.split(
                            r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])",
                            pieces[i]))
                    i += 1
            pieces = pieces_
        else:
            pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
        for i in range(1, len(pieces)):
            if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
                pieces[i - 1] += pieces[i][0]
                pieces[i] = pieces[i][1:]
        idx = []
        pieces_ = []
        for i, t in enumerate(pieces):
            if len(t) < 5:
                continue
            idx.append(i)
            pieces_.append(t)
        logging.debug("{} => {}".format(answer, pieces_))
        if not pieces_:
            return answer, set([])

        ans_v, _ = embd_mdl.encode(pieces_)
        assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
                len(ans_v[0]), len(chunk_v[0]))

        chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split()
                      for ck in chunks]
        cites = {}
        thr = 0.63
        while thr>0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks:
            for i, a in enumerate(pieces_):
                sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
                                                                chunk_v,
                                                                rag_tokenizer.tokenize(
                                                                    self.qryr.rmWWW(pieces_[i])).split(),
                                                                chunks_tks,
                                                                tkweight, vtweight)
                mx = np.max(sim) * 0.99
                logging.debug("{} SIM: {}".format(pieces_[i], mx))
                if mx < thr:
                    continue
                cites[idx[i]] = list(
                    set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
            thr *= 0.8

        res = ""
        seted = set([])
        for i, p in enumerate(pieces):
            res += p
            if i not in idx:
                continue
            if i not in cites:
                continue
            for c in cites[i]:
                assert int(c) < len(chunk_v)
            for c in cites[i]:
                if c in seted:
                    continue
                res += f" ##{c}$$"
                seted.add(c)

        return res, seted

    def rerank(self, sres, query, tkweight=0.3,
               vtweight=0.7, cfield="content_ltks"):
        _, keywords = self.qryr.question(query)
        vector_size = len(sres.query_vector)
        vector_column = f"q_{vector_size}_vec"
        zero_vector = [0.0] * vector_size
        ins_embd = []
        pageranks = []
        for chunk_id in sres.ids:
            vector = sres.field[chunk_id].get(vector_column, zero_vector)
            if isinstance(vector, str):
                vector = [float(v) for v in vector.split("\t")]
            ins_embd.append(vector)
            pageranks.append(sres.field[chunk_id].get("pagerank_fea", 0))
        if not ins_embd:
            return [], [], []

        for i in sres.ids:
            if isinstance(sres.field[i].get("important_kwd", []), str):
                sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
        ins_tw = []
        for i in sres.ids:
            content_ltks = sres.field[i][cfield].split()
            title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t]
            question_tks = [t for t in sres.field[i].get("question_tks", "").split() if t]
            important_kwd = sres.field[i].get("important_kwd", [])
            tks = content_ltks + title_tks*2 + important_kwd*5 + question_tks*6
            ins_tw.append(tks)

        sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
                                                        ins_embd,
                                                        keywords,
                                                        ins_tw, tkweight, vtweight)

        return sim+np.array(pageranks, dtype=float), tksim, vtsim

    def rerank_by_model(self, rerank_mdl, sres, query, tkweight=0.3,
               vtweight=0.7, cfield="content_ltks"):
        _, keywords = self.qryr.question(query)

        for i in sres.ids:
            if isinstance(sres.field[i].get("important_kwd", []), str):
                sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
        ins_tw = []
        for i in sres.ids:
            content_ltks = sres.field[i][cfield].split()
            title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t]
            important_kwd = sres.field[i].get("important_kwd", [])
            tks = content_ltks + title_tks + important_kwd
            ins_tw.append(tks)

        tksim = self.qryr.token_similarity(keywords, ins_tw)
        vtsim,_ = rerank_mdl.similarity(query, [rmSpace(" ".join(tks)) for tks in ins_tw])

        return tkweight*np.array(tksim) + vtweight*vtsim, tksim, vtsim

    def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
        return self.qryr.hybrid_similarity(ans_embd,
                                           ins_embd,
                                           rag_tokenizer.tokenize(ans).split(),
                                           rag_tokenizer.tokenize(inst).split())

    def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2,
                  vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True, rerank_mdl=None, highlight=False):
        ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
        if not question:
            return ranks

        RERANK_PAGE_LIMIT = 3
        req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": max(page_size*RERANK_PAGE_LIMIT, 128),
               "question": question, "vector": True, "topk": top,
               "similarity": similarity_threshold,
               "available_int": 1}

        if page > RERANK_PAGE_LIMIT:
            req["page"] = page
            req["size"] = page_size

        if isinstance(tenant_ids, str):
            tenant_ids = tenant_ids.split(",")

        sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight)
        ranks["total"] = sres.total

        if page <= RERANK_PAGE_LIMIT:
            if rerank_mdl:
                sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
                    sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
            else:
                sim, tsim, vsim = self.rerank(
                    sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
            idx = np.argsort(sim * -1)[(page-1)*page_size:page*page_size]
        else:
            sim = tsim = vsim = [1]*len(sres.ids)
            idx = list(range(len(sres.ids)))

        def floor_sim(score):
            return (int(score * 100.)%100)/100.

        dim = len(sres.query_vector)
        vector_column = f"q_{dim}_vec"
        zero_vector = [0.0] * dim
        for i in idx:
            if floor_sim(sim[i]) < similarity_threshold:
                break
            if len(ranks["chunks"]) >= page_size:
                if aggs:
                    continue
                break
            id = sres.ids[i]
            chunk = sres.field[id]
            dnm = chunk["docnm_kwd"]
            did = chunk["doc_id"]
            position_int = chunk.get("position_int", [])
            d = {
                "chunk_id": id,
                "content_ltks": chunk["content_ltks"],
                "content_with_weight": chunk["content_with_weight"],
                "doc_id": chunk["doc_id"],
                "docnm_kwd": dnm,
                "kb_id": chunk["kb_id"],
                "important_kwd": chunk.get("important_kwd", []),
                "image_id": chunk.get("img_id", ""),
                "similarity": sim[i],
                "vector_similarity": vsim[i],
                "term_similarity": tsim[i],
                "vector": chunk.get(vector_column, zero_vector),
                "positions": position_int,
            }
            if highlight and sres.highlight:
                if id in sres.highlight:
                    d["highlight"] = rmSpace(sres.highlight[id])
                else:
                    d["highlight"] = d["content_with_weight"]
            ranks["chunks"].append(d)
            if dnm not in ranks["doc_aggs"]:
                ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
            ranks["doc_aggs"][dnm]["count"] += 1
        ranks["doc_aggs"] = [{"doc_name": k,
                              "doc_id": v["doc_id"],
                              "count": v["count"]} for k,
                             v in sorted(ranks["doc_aggs"].items(),
                                         key=lambda x:x[1]["count"] * -1)]

        return ranks

    def sql_retrieval(self, sql, fetch_size=128, format="json"):
        tbl = self.dataStore.sql(sql, fetch_size, format)
        return tbl

    def chunk_list(self, doc_id: str, tenant_id: str, kb_ids: list[str], max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
        condition = {"doc_id": doc_id}
        res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), 0, max_count, index_name(tenant_id), kb_ids)
        dict_chunks = self.dataStore.getFields(res, fields)
        return dict_chunks.values()