KevinHuSh
commited on
Commit
·
004756c
1
Parent(s):
967c830
refine manual parser (#140)
Browse files- api/apps/conversation_app.py +2 -3
- api/apps/document_app.py +1 -1
- api/db/db_models.py +1 -1
- api/db/init_data.py +6 -2
- api/db/services/document_service.py +9 -0
- deepdoc/parser/pdf_parser.py +20 -3
- deepdoc/vision/layout_recognizer.py +6 -2
- rag/app/manual.py +25 -27
- rag/app/one.py +2 -4
- rag/nlp/search.py +3 -2
- rag/svr/task_broker.py +2 -2
api/apps/conversation_app.py
CHANGED
@@ -118,14 +118,13 @@ def message_fit_in(msg, max_length=4000):
|
|
118 |
|
119 |
c = count()
|
120 |
if c < max_length: return c, msg
|
121 |
-
|
122 |
-
c = count()
|
123 |
-
if c < max_length: return c, msg
|
124 |
msg_ = [m for m in msg[:-1] if m.role == "system"]
|
125 |
msg_.append(msg[-1])
|
126 |
msg = msg_
|
127 |
c = count()
|
128 |
if c < max_length: return c, msg
|
|
|
129 |
ll = num_tokens_from_string(msg_[0].content)
|
130 |
l = num_tokens_from_string(msg_[-1].content)
|
131 |
if ll / (ll + l) > 0.8:
|
|
|
118 |
|
119 |
c = count()
|
120 |
if c < max_length: return c, msg
|
121 |
+
|
|
|
|
|
122 |
msg_ = [m for m in msg[:-1] if m.role == "system"]
|
123 |
msg_.append(msg[-1])
|
124 |
msg = msg_
|
125 |
c = count()
|
126 |
if c < max_length: return c, msg
|
127 |
+
|
128 |
ll = num_tokens_from_string(msg_[0].content)
|
129 |
l = num_tokens_from_string(msg_[-1].content)
|
130 |
if ll / (ll + l) > 0.8:
|
api/apps/document_app.py
CHANGED
@@ -218,7 +218,7 @@ def rm():
|
|
218 |
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
|
219 |
|
220 |
DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0)
|
221 |
-
if not DocumentService.
|
222 |
return get_data_error_result(
|
223 |
retmsg="Database error (Document removal)!")
|
224 |
|
|
|
218 |
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
|
219 |
|
220 |
DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0)
|
221 |
+
if not DocumentService.delete(doc):
|
222 |
return get_data_error_result(
|
223 |
retmsg="Database error (Document removal)!")
|
224 |
|
api/db/db_models.py
CHANGED
@@ -353,7 +353,7 @@ class User(DataBaseModel, UserMixin):
|
|
353 |
email = CharField(max_length=255, null=False, help_text="email", index=True)
|
354 |
avatar = TextField(null=True, help_text="avatar base64 string")
|
355 |
language = CharField(max_length=32, null=True, help_text="English|Chinese", default="Chinese")
|
356 |
-
color_schema = CharField(max_length=32, null=True, help_text="Bright|Dark", default="
|
357 |
timezone = CharField(max_length=64, null=True, help_text="Timezone", default="UTC+8\tAsia/Shanghai")
|
358 |
last_login_time = DateTimeField(null=True)
|
359 |
is_authenticated = CharField(max_length=1, null=False, default="1")
|
|
|
353 |
email = CharField(max_length=255, null=False, help_text="email", index=True)
|
354 |
avatar = TextField(null=True, help_text="avatar base64 string")
|
355 |
language = CharField(max_length=32, null=True, help_text="English|Chinese", default="Chinese")
|
356 |
+
color_schema = CharField(max_length=32, null=True, help_text="Bright|Dark", default="Bright")
|
357 |
timezone = CharField(max_length=64, null=True, help_text="Timezone", default="UTC+8\tAsia/Shanghai")
|
358 |
last_login_time = DateTimeField(null=True)
|
359 |
is_authenticated = CharField(max_length=1, null=False, default="1")
|
api/db/init_data.py
CHANGED
@@ -223,7 +223,7 @@ def init_llm_factory():
|
|
223 |
"fid": factory_infos[3]["name"],
|
224 |
"llm_name": "qwen-14B-chat",
|
225 |
"tags": "LLM,CHAT,",
|
226 |
-
"max_tokens":
|
227 |
"model_type": LLMType.CHAT.value
|
228 |
}, {
|
229 |
"fid": factory_infos[3]["name"],
|
@@ -271,11 +271,15 @@ def init_llm_factory():
|
|
271 |
pass
|
272 |
|
273 |
"""
|
|
|
274 |
drop table llm;
|
275 |
-
drop table
|
276 |
update tenant_llm set llm_factory='Tongyi-Qianwen' where llm_factory='通义千问';
|
277 |
update tenant_llm set llm_factory='ZHIPU-AI' where llm_factory='智谱AI';
|
278 |
update tenant set parser_ids='naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture';
|
|
|
|
|
|
|
279 |
"""
|
280 |
|
281 |
|
|
|
223 |
"fid": factory_infos[3]["name"],
|
224 |
"llm_name": "qwen-14B-chat",
|
225 |
"tags": "LLM,CHAT,",
|
226 |
+
"max_tokens": 4096,
|
227 |
"model_type": LLMType.CHAT.value
|
228 |
}, {
|
229 |
"fid": factory_infos[3]["name"],
|
|
|
271 |
pass
|
272 |
|
273 |
"""
|
274 |
+
modify service_config
|
275 |
drop table llm;
|
276 |
+
drop table llm_factories;
|
277 |
update tenant_llm set llm_factory='Tongyi-Qianwen' where llm_factory='通义千问';
|
278 |
update tenant_llm set llm_factory='ZHIPU-AI' where llm_factory='智谱AI';
|
279 |
update tenant set parser_ids='naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture';
|
280 |
+
alter table knowledgebase modify avatar longtext;
|
281 |
+
alter table user modify avatar longtext;
|
282 |
+
alter table dialog modify icon longtext;
|
283 |
"""
|
284 |
|
285 |
|
api/db/services/document_service.py
CHANGED
@@ -60,6 +60,15 @@ class DocumentService(CommonService):
|
|
60 |
raise RuntimeError("Database error (Knowledgebase)!")
|
61 |
return doc
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
@classmethod
|
64 |
@DB.connection_context()
|
65 |
def get_newly_uploaded(cls, tm, mod=0, comm=1, items_per_page=64):
|
|
|
60 |
raise RuntimeError("Database error (Knowledgebase)!")
|
61 |
return doc
|
62 |
|
63 |
+
@classmethod
|
64 |
+
@DB.connection_context()
|
65 |
+
def delete(cls, doc):
|
66 |
+
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
|
67 |
+
if not KnowledgebaseService.update_by_id(
|
68 |
+
kb.id, {"doc_num": kb.doc_num - 1}):
|
69 |
+
raise RuntimeError("Database error (Knowledgebase)!")
|
70 |
+
return cls.delete_by_id(doc.id)
|
71 |
+
|
72 |
@classmethod
|
73 |
@DB.connection_context()
|
74 |
def get_newly_uploaded(cls, tm, mod=0, comm=1, items_per_page=64):
|
deepdoc/parser/pdf_parser.py
CHANGED
@@ -11,7 +11,7 @@ import logging
|
|
11 |
from PIL import Image, ImageDraw
|
12 |
import numpy as np
|
13 |
|
14 |
-
from
|
15 |
from deepdoc.vision import OCR, Recognizer, LayoutRecognizer, TableStructureRecognizer
|
16 |
from rag.nlp import huqie
|
17 |
from copy import deepcopy
|
@@ -288,9 +288,9 @@ class HuParser:
|
|
288 |
for b in bxs])
|
289 |
self.boxes.append(bxs)
|
290 |
|
291 |
-
def _layouts_rec(self, ZM):
|
292 |
assert len(self.page_images) == len(self.boxes)
|
293 |
-
self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM)
|
294 |
# cumlative Y
|
295 |
for i in range(len(self.boxes)):
|
296 |
self.boxes[i]["top"] += \
|
@@ -908,6 +908,23 @@ class HuParser:
|
|
908 |
self.page_images.append(img)
|
909 |
self.page_chars.append([])
|
910 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
911 |
logging.info("Images converted.")
|
912 |
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(
|
913 |
random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in
|
|
|
11 |
from PIL import Image, ImageDraw
|
12 |
import numpy as np
|
13 |
|
14 |
+
from PyPDF2 import PdfReader as pdf2_read
|
15 |
from deepdoc.vision import OCR, Recognizer, LayoutRecognizer, TableStructureRecognizer
|
16 |
from rag.nlp import huqie
|
17 |
from copy import deepcopy
|
|
|
288 |
for b in bxs])
|
289 |
self.boxes.append(bxs)
|
290 |
|
291 |
+
def _layouts_rec(self, ZM, drop=True):
|
292 |
assert len(self.page_images) == len(self.boxes)
|
293 |
+
self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM, drop=drop)
|
294 |
# cumlative Y
|
295 |
for i in range(len(self.boxes)):
|
296 |
self.boxes[i]["top"] += \
|
|
|
908 |
self.page_images.append(img)
|
909 |
self.page_chars.append([])
|
910 |
|
911 |
+
self.outlines = []
|
912 |
+
try:
|
913 |
+
self.pdf = pdf2_read(fnm if isinstance(fnm, str) else BytesIO(fnm))
|
914 |
+
outlines = self.pdf.outline
|
915 |
+
|
916 |
+
def dfs(arr, depth):
|
917 |
+
for a in arr:
|
918 |
+
if isinstance(a, dict):
|
919 |
+
self.outlines.append((a["/Title"], depth))
|
920 |
+
continue
|
921 |
+
dfs(a, depth+1)
|
922 |
+
dfs(outlines, 0)
|
923 |
+
except Exception as e:
|
924 |
+
logging.warning(f"Outlines exception: {e}")
|
925 |
+
if not self.outlines:
|
926 |
+
logging.warning(f"Miss outlines")
|
927 |
+
|
928 |
logging.info("Images converted.")
|
929 |
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(
|
930 |
random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in
|
deepdoc/vision/layout_recognizer.py
CHANGED
@@ -39,7 +39,7 @@ class LayoutRecognizer(Recognizer):
|
|
39 |
super().__init__(self.labels, domain, os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
40 |
self.garbage_layouts = ["footer", "header", "reference"]
|
41 |
|
42 |
-
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16):
|
43 |
def __is_garbage(b):
|
44 |
patt = [r"^•+$", r"(版权归©|免责条款|地址[::])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
|
45 |
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
|
@@ -88,7 +88,11 @@ class LayoutRecognizer(Recognizer):
|
|
88 |
i += 1
|
89 |
continue
|
90 |
lts_[ii]["visited"] = True
|
91 |
-
|
|
|
|
|
|
|
|
|
92 |
if lts_[ii]["type"] not in garbages:
|
93 |
garbages[lts_[ii]["type"]] = []
|
94 |
garbages[lts_[ii]["type"]].append(bxs[i]["text"])
|
|
|
39 |
super().__init__(self.labels, domain, os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
40 |
self.garbage_layouts = ["footer", "header", "reference"]
|
41 |
|
42 |
+
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True):
|
43 |
def __is_garbage(b):
|
44 |
patt = [r"^•+$", r"(版权归©|免责条款|地址[::])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
|
45 |
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
|
|
|
88 |
i += 1
|
89 |
continue
|
90 |
lts_[ii]["visited"] = True
|
91 |
+
keep_feats = [
|
92 |
+
lts_[ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1]*0.9/scale_factor,
|
93 |
+
lts_[ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1]*0.1/scale_factor,
|
94 |
+
]
|
95 |
+
if drop and lts_[ii]["type"] in self.garbage_layouts and not any(keep_feats):
|
96 |
if lts_[ii]["type"] not in garbages:
|
97 |
garbages[lts_[ii]["type"]] = []
|
98 |
garbages[lts_[ii]["type"]].append(bxs[i]["text"])
|
rag/app/manual.py
CHANGED
@@ -51,15 +51,30 @@ class Pdf(PdfParser):
|
|
51 |
|
52 |
# set pivot using the most frequent type of title,
|
53 |
# then merge between 2 pivot
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
assert len(self.boxes) == len(levels)
|
57 |
sec_ids = []
|
58 |
sid = 0
|
59 |
for i, lvl in enumerate(levels):
|
60 |
if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1
|
61 |
sec_ids.append(sid)
|
62 |
-
#print(lvl, self.boxes[i]["text"], most_level)
|
63 |
|
64 |
sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
|
65 |
for (img, rows), poss in tbls:
|
@@ -67,13 +82,16 @@ class Pdf(PdfParser):
|
|
67 |
|
68 |
chunks = []
|
69 |
last_sid = -2
|
|
|
70 |
for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
71 |
poss = "\t".join([tag(*pos) for pos in poss])
|
72 |
-
if sec_id == last_sid or sec_id == -1:
|
73 |
if chunks:
|
74 |
chunks[-1] += "\n" + txt + poss
|
|
|
75 |
continue
|
76 |
chunks.append(txt + poss)
|
|
|
77 |
if sec_id >-1: last_sid = sec_id
|
78 |
return chunks, tbls
|
79 |
|
@@ -97,37 +115,17 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|
97 |
# is it English
|
98 |
eng = lang.lower() == "english"#pdf_parser.is_english
|
99 |
|
100 |
-
i = 0
|
101 |
-
chunk = []
|
102 |
-
tk_cnt = 0
|
103 |
res = tokenize_table(tbls, doc, eng)
|
104 |
-
|
105 |
-
nonlocal chunk, res, doc, pdf_parser, tk_cnt
|
106 |
d = copy.deepcopy(doc)
|
107 |
-
ck = "\n".join(chunk)
|
108 |
-
tokenize(d, pdf_parser.remove_tag(ck), eng)
|
109 |
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
110 |
add_positions(d, poss)
|
|
|
111 |
res.append(d)
|
112 |
-
chunk = []
|
113 |
-
tk_cnt = 0
|
114 |
-
|
115 |
-
while i < len(cks):
|
116 |
-
if tk_cnt > 256: add_chunk()
|
117 |
-
txt = cks[i]
|
118 |
-
txt_ = pdf_parser.remove_tag(txt)
|
119 |
-
i += 1
|
120 |
-
cnt = num_tokens_from_string(txt_)
|
121 |
-
chunk.append(txt)
|
122 |
-
tk_cnt += cnt
|
123 |
-
if chunk: add_chunk()
|
124 |
-
|
125 |
-
for i, d in enumerate(res):
|
126 |
-
print(d)
|
127 |
-
# d["image"].save(f"./logs/{i}.jpg")
|
128 |
return res
|
129 |
|
130 |
|
|
|
131 |
if __name__ == "__main__":
|
132 |
import sys
|
133 |
def dummy(prog=None, msg=""):
|
|
|
51 |
|
52 |
# set pivot using the most frequent type of title,
|
53 |
# then merge between 2 pivot
|
54 |
+
if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1:
|
55 |
+
max_lvl = max([lvl for _, lvl in self.outlines])
|
56 |
+
most_level = max(0, max_lvl-1)
|
57 |
+
levels = []
|
58 |
+
for b in self.boxes:
|
59 |
+
for t,lvl in self.outlines:
|
60 |
+
tks = set([t[i]+t[i+1] for i in range(len(t)-1)])
|
61 |
+
tks_ = set([b["text"][i]+b["text"][i+1] for i in range(min(len(t), len(b["text"])-1))])
|
62 |
+
if len(set(tks & tks_))/max([len(tks), len(tks_), 1]) > 0.8:
|
63 |
+
levels.append(lvl)
|
64 |
+
break
|
65 |
+
else:
|
66 |
+
levels.append(max_lvl + 1)
|
67 |
+
else:
|
68 |
+
bull = bullets_category([b["text"] for b in self.boxes])
|
69 |
+
most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes])
|
70 |
+
|
71 |
assert len(self.boxes) == len(levels)
|
72 |
sec_ids = []
|
73 |
sid = 0
|
74 |
for i, lvl in enumerate(levels):
|
75 |
if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1
|
76 |
sec_ids.append(sid)
|
77 |
+
#print(lvl, self.boxes[i]["text"], most_level, sid)
|
78 |
|
79 |
sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
|
80 |
for (img, rows), poss in tbls:
|
|
|
82 |
|
83 |
chunks = []
|
84 |
last_sid = -2
|
85 |
+
tk_cnt = 0
|
86 |
for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
87 |
poss = "\t".join([tag(*pos) for pos in poss])
|
88 |
+
if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1):
|
89 |
if chunks:
|
90 |
chunks[-1] += "\n" + txt + poss
|
91 |
+
tk_cnt += num_tokens_from_string(txt)
|
92 |
continue
|
93 |
chunks.append(txt + poss)
|
94 |
+
tk_cnt = num_tokens_from_string(txt)
|
95 |
if sec_id >-1: last_sid = sec_id
|
96 |
return chunks, tbls
|
97 |
|
|
|
115 |
# is it English
|
116 |
eng = lang.lower() == "english"#pdf_parser.is_english
|
117 |
|
|
|
|
|
|
|
118 |
res = tokenize_table(tbls, doc, eng)
|
119 |
+
for ck in cks:
|
|
|
120 |
d = copy.deepcopy(doc)
|
|
|
|
|
121 |
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
122 |
add_positions(d, poss)
|
123 |
+
tokenize(d, pdf_parser.remove_tag(ck), eng)
|
124 |
res.append(d)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
return res
|
126 |
|
127 |
|
128 |
+
|
129 |
if __name__ == "__main__":
|
130 |
import sys
|
131 |
def dummy(prog=None, msg=""):
|
rag/app/one.py
CHANGED
@@ -10,12 +10,10 @@
|
|
10 |
# See the License for the specific language governing permissions and
|
11 |
# limitations under the License.
|
12 |
#
|
13 |
-
import copy
|
14 |
import re
|
15 |
from rag.app import laws
|
16 |
-
from rag.nlp import huqie,
|
17 |
from deepdoc.parser import PdfParser, ExcelParser
|
18 |
-
from rag.settings import cron_logger
|
19 |
|
20 |
|
21 |
class Pdf(PdfParser):
|
@@ -33,7 +31,7 @@ class Pdf(PdfParser):
|
|
33 |
|
34 |
from timeit import default_timer as timer
|
35 |
start = timer()
|
36 |
-
self._layouts_rec(zoomin)
|
37 |
callback(0.63, "Layout analysis finished.")
|
38 |
print("paddle layouts:", timer() - start)
|
39 |
self._table_transformer_job(zoomin)
|
|
|
10 |
# See the License for the specific language governing permissions and
|
11 |
# limitations under the License.
|
12 |
#
|
|
|
13 |
import re
|
14 |
from rag.app import laws
|
15 |
+
from rag.nlp import huqie, tokenize
|
16 |
from deepdoc.parser import PdfParser, ExcelParser
|
|
|
17 |
|
18 |
|
19 |
class Pdf(PdfParser):
|
|
|
31 |
|
32 |
from timeit import default_timer as timer
|
33 |
start = timer()
|
34 |
+
self._layouts_rec(zoomin, drop=False)
|
35 |
callback(0.63, "Layout analysis finished.")
|
36 |
print("paddle layouts:", timer() - start)
|
37 |
self._table_transformer_job(zoomin)
|
rag/nlp/search.py
CHANGED
@@ -215,7 +215,7 @@ class Dealer:
|
|
215 |
else:
|
216 |
pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
|
217 |
for i in range(1, len(pieces)):
|
218 |
-
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
|
219 |
pieces[i - 1] += pieces[i][0]
|
220 |
pieces[i] = pieces[i][1:]
|
221 |
idx = []
|
@@ -243,7 +243,8 @@ class Dealer:
|
|
243 |
chunks_tks,
|
244 |
tkweight, vtweight)
|
245 |
mx = np.max(sim) * 0.99
|
246 |
-
|
|
|
247 |
continue
|
248 |
cites[idx[i]] = list(
|
249 |
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
|
|
|
215 |
else:
|
216 |
pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
|
217 |
for i in range(1, len(pieces)):
|
218 |
+
if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
|
219 |
pieces[i - 1] += pieces[i][0]
|
220 |
pieces[i] = pieces[i][1:]
|
221 |
idx = []
|
|
|
243 |
chunks_tks,
|
244 |
tkweight, vtweight)
|
245 |
mx = np.max(sim) * 0.99
|
246 |
+
es_logger.info("{} SIM: {}".format(pieces_[i], mx))
|
247 |
+
if mx < 0.63:
|
248 |
continue
|
249 |
cites[idx[i]] = list(
|
250 |
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
|
rag/svr/task_broker.py
CHANGED
@@ -82,8 +82,8 @@ def dispatch():
|
|
82 |
tsks = []
|
83 |
if r["type"] == FileType.PDF.value:
|
84 |
pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
85 |
-
page_size =
|
86 |
-
if r["parser_id"] == "paper": page_size =
|
87 |
if r["parser_id"] == "one": page_size = 1000000000
|
88 |
for s,e in r["parser_config"].get("pages", [(0,100000)]):
|
89 |
e = min(e, pages)
|
|
|
82 |
tsks = []
|
83 |
if r["type"] == FileType.PDF.value:
|
84 |
pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
85 |
+
page_size = 12
|
86 |
+
if r["parser_id"] == "paper": page_size = 22
|
87 |
if r["parser_id"] == "one": page_size = 1000000000
|
88 |
for s,e in r["parser_config"].get("pages", [(0,100000)]):
|
89 |
e = min(e, pages)
|