File size: 43,063 Bytes
995e253
 
935e280
 
 
 
d607735
2d88b84
e9c1552
e587fd6
 
935e280
4c39067
d607735
 
e587fd6
 
4c39067
d607735
 
 
 
 
 
5ec7450
d607735
 
4c39067
d607735
 
 
 
4c39067
d607735
 
 
811d178
d607735
 
 
 
 
 
 
 
 
 
 
811d178
d607735
2e482fd
d607735
811d178
d607735
4c39067
d607735
811d178
d607735
4c39067
d607735
995e253
4c39067
d607735
4c39067
d607735
0c0ac14
 
 
 
d607735
4c39067
d607735
e587fd6
 
 
 
 
 
 
 
 
 
 
10bca92
8d1baac
995e253
7ddda98
d607735
e9c1552
d607735
7ddda98
4b50c07
7ddda98
4b50c07
 
 
 
 
 
 
 
 
 
 
 
 
7ddda98
 
4b50c07
 
 
 
 
 
7ddda98
 
d607735
 
e9c1552
 
 
 
d607735
 
 
 
 
e9c1552
e587fd6
d607735
 
 
 
4c39067
d607735
 
7af2206
d607735
 
7af2206
e9c1552
 
811d178
2885106
2e482fd
7af2206
2e482fd
 
d607735
e9c1552
 
d607735
 
 
82f39fc
e587fd6
d607735
 
 
 
4c39067
d607735
 
 
 
995e253
d607735
2e482fd
 
 
f6252d5
d607735
 
5ec7450
d607735
 
 
811d178
d607735
e587fd6
d607735
811d178
d607735
995e253
d607735
e587fd6
d607735
e587fd6
 
 
 
d607735
811d178
d607735
4c39067
d607735
811d178
d607735
e587fd6
d607735
811d178
d607735
e587fd6
d607735
 
 
e587fd6
e9c1552
82f39fc
811d178
d607735
4c39067
811d178
e9c1552
e587fd6
 
d607735
 
4c39067
d607735
e9c1552
 
 
 
 
 
811d178
4c39067
d607735
 
2e482fd
d607735
 
e587fd6
e9c1552
 
 
 
 
e587fd6
 
10bca92
 
e9c1552
e587fd6
e9c1552
 
 
 
 
 
 
 
 
10bca92
995e253
8d1baac
995e253
e9c1552
d607735
 
e9c1552
 
d607735
 
 
 
 
 
e587fd6
 
4c39067
d607735
ad355eb
d607735
 
 
4c39067
d607735
 
4c39067
 
ad355eb
d607735
 
f6252d5
d607735
 
4c39067
ad355eb
d607735
 
e587fd6
ad355eb
 
d607735
4c39067
 
d607735
3d9274d
ad355eb
 
 
3d9274d
 
 
ad355eb
4c39067
 
3d9274d
ad355eb
3d9274d
d607735
3d9274d
 
 
 
 
 
ad355eb
 
3d9274d
 
4c39067
ad355eb
e587fd6
 
5ec7450
4c39067
 
 
 
 
 
 
 
 
 
 
8d1baac
995e253
7ddda98
4b50c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddda98
 
4b50c07
 
 
 
7ddda98
 
d607735
 
 
ad355eb
 
d607735
 
 
3d9274d
 
 
e587fd6
 
 
ad355eb
3d9274d
4c39067
3d9274d
 
d607735
 
3d9274d
d607735
 
3d9274d
 
 
e587fd6
4c39067
3d9274d
 
4c39067
3d9274d
 
 
 
 
 
4c39067
 
 
 
3d9274d
 
 
 
 
 
 
 
 
 
995e253
d607735
 
5ec7450
4c39067
d607735
 
e587fd6
d607735
4c39067
d607735
e587fd6
3d9274d
d36c193
3d9274d
121b0b5
3d9274d
121b0b5
3d9274d
121b0b5
3d9274d
995e253
ad355eb
e587fd6
d607735
e587fd6
4c39067
e587fd6
4c39067
d607735
e587fd6
ad355eb
4c39067
ad355eb
d607735
 
116c571
 
d607735
116c571
 
e587fd6
 
 
2885106
5ec7450
e587fd6
920f3c8
e587fd6
 
 
d36c193
e587fd6
 
 
920f3c8
 
9e1f9a0
 
 
 
 
920f3c8
4b50c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddda98
 
4b50c07
 
 
 
7ddda98
 
d607735
 
 
 
 
 
d36c193
 
d607735
 
e587fd6
 
121b0b5
e587fd6
d607735
 
 
 
 
 
 
f6252d5
d607735
ad355eb
e587fd6
 
 
 
 
 
7af2206
116c571
d607735
 
ad355eb
 
d607735
 
 
 
 
 
e587fd6
 
 
 
d607735
 
 
 
4c39067
d607735
 
f6252d5
d607735
 
d36c193
 
d607735
 
e587fd6
ad355eb
116c571
d607735
 
ad355eb
920f3c8
ad355eb
d607735
 
 
 
e587fd6
 
d607735
5ec7450
 
 
d607735
e587fd6
 
 
3d9274d
 
e587fd6
 
d607735
 
ad355eb
 
4c39067
 
 
 
 
 
d36c193
 
4c39067
 
e587fd6
4c39067
e587fd6
4c39067
 
 
 
 
 
 
 
 
e587fd6
 
4c39067
5ec7450
 
 
4c39067
e587fd6
 
 
4c39067
 
e587fd6
 
 
 
4c39067
 
 
 
d36c193
ad355eb
d607735
5ec7450
d607735
ad355eb
d36c193
e587fd6
d607735
 
d36c193
d607735
d36c193
d607735
5ec7450
116c571
d36c193
ad355eb
d607735
116c571
d36c193
e587fd6
d607735
d36c193
 
4cb6b27
 
 
d36c193
 
2885106
d36c193
 
5ec7450
 
7af2206
d36c193
 
3d9274d
116c571
3d9274d
 
d607735
e587fd6
d36c193
 
 
 
 
3d9274d
ad355eb
d36c193
 
 
d607735
 
995e253
d607735
 
5ec7450
d36c193
d607735
 
5ec7450
9e1f9a0
d36c193
ad355eb
121b0b5
d36c193
121b0b5
d36c193
121b0b5
ad355eb
995e253
ad355eb
5ec7450
d36c193
 
d607735
 
 
d36c193
 
d607735
 
 
 
 
 
d36c193
 
 
 
121b0b5
d36c193
d607735
 
 
 
d36c193
d607735
 
f6252d5
d607735
116c571
e587fd6
 
3d9274d
ad355eb
e587fd6
ad355eb
7af2206
d607735
 
 
ad355eb
 
d607735
 
 
 
 
 
d36c193
 
 
 
3d9274d
d607735
3d9274d
d607735
 
 
 
3d9274d
d607735
 
3d9274d
d607735
4c39067
e587fd6
4c39067
3d9274d
 
4c39067
3d9274d
e587fd6
 
4cb6b27
d36c193
5ec7450
 
7af2206
d607735
 
 
ad355eb
 
d607735
 
 
 
 
 
4c39067
 
116c571
 
3d9274d
d607735
116c571
d607735
 
 
 
4c39067
d607735
 
995e253
d607735
 
5ec7450
d36c193
d607735
 
0c0ac14
d607735
 
 
2885106
d607735
10bca92
d607735
2885106
d607735
10bca92
d607735
121b0b5
d607735
5ec7450
d607735
121b0b5
d607735
995e253
d607735
 
 
 
 
4cb6b27
d607735
4c39067
d607735
 
 
4c39067
 
d36c193
d607735
d36c193
3d9274d
d36c193
4c39067
5ec7450
4c39067
5ec7450
 
3d9274d
d36c193
3d9274d
4cb6b27
5ec7450
 
 
4c39067
d607735
 
4c39067
 
d607735
 
 
 
 
 
4c39067
d36c193
 
d607735
3d9274d
d36c193
 
3d9274d
d36c193
4c39067
2885106
121b0b5
d607735
 
 
 
 
 
 
 
 
ad355eb
d607735
 
e587fd6
 
f6252d5
e9c1552
d607735
40a1db3
4c39067
 
2885106
40a1db3
 
 
d607735
 
f6252d5
 
4c39067
d607735
5ec7450
4c39067
4cb6b27
4c39067
d36c193
4c39067
 
 
2885106
4c39067
 
 
d36c193
4c39067
4cb6b27
4c39067
4cb6b27
7af2206
4cb6b27
 
 
4c39067
4cb6b27
4c39067
4cb6b27
4c39067
4cb6b27
 
4c39067
d36c193
4c39067
 
 
02e5242
4cb6b27
 
 
7af2206
 
 
4cb6b27
 
 
 
2343334
d607735
4c39067
 
 
 
 
d607735
 
 
 
 
d36c193
 
 
 
 
2885106
d607735
 
 
 
d36c193
d607735
 
40a1db3
d607735
 
e587fd6
f6252d5
e9c1552
 
e587fd6
 
 
e9c1552
10bca92
e9c1552
2885106
f6252d5
 
 
e9c1552
f6252d5
 
4cb6b27
f6252d5
02e5242
4cb6b27
 
7af2206
 
 
 
f6252d5
4c39067
f6252d5
 
2343334
e9c1552
d607735
 
e9c1552
 
d607735
 
 
 
 
 
d36c193
 
2885106
 
f6252d5
d607735
 
 
 
d36c193
d607735
 
f6252d5
d607735
40a1db3
e587fd6
 
e9c1552
40a1db3
e587fd6
40a1db3
eae0334
d607735
 
 
e9c1552
 
d607735
 
 
 
 
 
d36c193
 
d607735
 
 
 
d36c193
d607735
 
40a1db3
 
995e253
40a1db3
 
 
 
f6252d5
d607735
 
5ec7450
116c571
d607735
 
d36c193
d607735
e587fd6
d607735
d36c193
d607735
995e253
d607735
d36c193
d607735
d36c193
d607735
d36c193
 
 
 
d607735
4c39067
d607735
d36c193
d607735
d36c193
d607735
d36c193
d607735
d36c193
e9c1552
d607735
 
f6252d5
e9c1552
d607735
 
 
 
 
 
e587fd6
 
e9c1552
d607735
 
 
 
 
d36c193
d607735
 
e587fd6
 
0c0ac14
d607735
 
cd7d2b9
d607735
 
0c0ac14
d607735
f6252d5
d607735
d36c193
d607735
f6252d5
d607735
f6252d5
d607735
f6252d5
 
 
 
 
 
d607735
 
 
 
 
 
d36c193
 
f6252d5
 
d607735
 
d36c193
 
0c0ac14
d607735
 
f6252d5
d607735
 
0c0ac14
f6252d5
 
 
 
 
e587fd6
 
10bca92
f6252d5
d607735
 
f6252d5
 
d607735
 
 
 
 
 
d36c193
 
f6252d5
 
 
d607735
 
 
 
0c0ac14
d607735
 
cd7d2b9
 
995e253
cd7d2b9
 
 
 
f6252d5
d607735
 
f6252d5
d607735
f6252d5
d607735
d36c193
d607735
e587fd6
d607735
d36c193
d607735
995e253
cd7d2b9
d36c193
cd7d2b9
e587fd6
4c39067
e587fd6
4c39067
cd7d2b9
d36c193
cd7d2b9
4c39067
cd7d2b9
d36c193
cd7d2b9
f6252d5
cd7d2b9
d36c193
cd7d2b9
d36c193
cd7d2b9
f6252d5
cd7d2b9
f6252d5
 
cd7d2b9
f6252d5
 
 
 
 
e587fd6
 
f6252d5
 
 
 
cd7d2b9
d607735
 
0c0ac14
d607735
 
f6252d5
d607735
 
0c0ac14
f6252d5
 
 
e587fd6
f6252d5
7af2206
f6252d5
d607735
 
f6252d5
 
d607735
 
 
 
 
 
d36c193
 
f6252d5
 
d36c193
 
 
 
0c0ac14
d36c193
 
 
 
 
0c0ac14
 
 
 
 
d36c193
 
 
0c0ac14
d36c193
ce611dd
d36c193
7af2206
d36c193
 
 
1d9d2fb
 
d36c193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b691127
ce611dd
d36c193
 
 
 
 
 
2885106
d36c193
ce611dd
 
d36c193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afa2cc
d36c193
 
 
 
 
 
 
e9078f4
 
 
0c0ac14
e9078f4
 
0c0ac14
e9078f4
 
 
 
 
0c0ac14
e9078f4
 
 
 
 
 
0c0ac14
e9078f4
 
 
 
 
 
 
 
 
 
 
0c0ac14
e9078f4
 
0c0ac14
e9078f4
 
 
 
 
0c0ac14
 
 
 
 
e9078f4
 
 
0c0ac14
e9078f4
 
 
 
 
 
 
1d9d2fb
 
e9078f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c0ac14
e9078f4
 
 
0c0ac14
 
e9078f4
 
 
 
 
10bca92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
---
sidebar_position: 2
slug: /python_api_reference
---

# Python API Reference

A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](../guides/develop/acquire_ragflow_api_key.md).

---

:::tip API GROUPING
Dataset Management
:::

---

## Create dataset

```python
RAGFlow.create_dataset(
    name: str,
    avatar: str = "",
    description: str = "",
    embedding_model: str = "BAAI/bge-zh-v1.5",
    language: str = "English",
    permission: str = "me", 
    chunk_method: str = "naive",
    parser_config: DataSet.ParserConfig = None
) -> DataSet
```

Creates a dataset.

### Parameters

#### name: `str`, *Required*

The unique name of the dataset to create. It must adhere to the following requirements:

- Permitted characters include:
  - English letters (a-z, A-Z)
  - Digits (0-9)
  - "_" (underscore)
- Must begin with an English letter or underscore.
- Maximum 65,535 characters.
- Case-insensitive.

#### avatar: `str`

Base64 encoding of the avatar. Defaults to `""`

#### description: `str`

A brief description of the dataset to create. Defaults to `""`.

#### language: `str`

The language setting of the dataset to create. Available options:

- `"English"` (default)
- `"Chinese"`

#### permission

Specifies who can access the dataset to create. Available options:  

- `"me"`: (Default) Only you can manage the dataset.
- `"team"`: All team members can manage the dataset.

#### chunk_method, `str`

The chunking method of the dataset to create. Available options:

- `"naive"`: General (default)
- `"manual`: Manual
- `"qa"`: Q&A
- `"table"`: Table
- `"paper"`: Paper
- `"book"`: Book
- `"laws"`: Laws
- `"presentation"`: Presentation
- `"picture"`: Picture
- `"one"`: One
- `"knowledge_graph"`: Knowledge Graph  
  Ensure your LLM is properly configured on the **Settings** page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
- `"email"`: Email

#### parser_config

The parser configuration of the dataset. A `ParserConfig` object's attributes vary based on the selected `chunk_method`:

- `chunk_method`=`"naive"`:  
  `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}`.
- `chunk_method`=`"qa"`:  
  `{"raptor": {"user_raptor": False}}`
- `chunk_method`=`"manuel"`:  
  `{"raptor": {"user_raptor": False}}`
- `chunk_method`=`"table"`:  
  `None`
- `chunk_method`=`"paper"`:  
  `{"raptor": {"user_raptor": False}}`
- `chunk_method`=`"book"`:  
  `{"raptor": {"user_raptor": False}}`
- `chunk_method`=`"laws"`:  
  `{"raptor": {"user_raptor": False}}`
- `chunk_method`=`"picture"`:  
  `None`
- `chunk_method`=`"presentation"`:  
  `{"raptor": {"user_raptor": False}}`
- `chunk_method`=`"one"`:  
  `None`
- `chunk_method`=`"knowledge-graph"`:  
  `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}`
- `chunk_method`=`"email"`:  
  `None`

### Returns

- Success: A `dataset` object.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")
```

---

## Delete datasets

```python
RAGFlow.delete_datasets(ids: list[str] = None)
```

Deletes datasets by ID.

### Parameters

#### ids: `list[str]`, *Required*

The IDs of the datasets to delete. Defaults to `None`. If it is not specified, all datasets will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
rag_object.delete_datasets(ids=["id_1","id_2"])
```

---

## List datasets

```python
RAGFlow.list_datasets(
    page: int = 1, 
    page_size: int = 30, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    name: str = None
) -> list[DataSet]
```

Lists datasets.

### Parameters

#### page: `int`

Specifies the page on which the datasets will be displayed. Defaults to `1`.

#### page_size: `int`

The number of datasets on each page. Defaults to `30`.

#### orderby: `str`

The field by which datasets should be sorted. Available options:

- `"create_time"` (default)
- `"update_time"`

#### desc: `bool`

Indicates whether the retrieved datasets should be sorted in descending order. Defaults to `True`.

#### id: `str`

The ID of the dataset to retrieve. Defaults to `None`.

#### name: `str`

The name of the dataset to retrieve. Defaults to `None`.

### Returns

- Success: A list of `DataSet` objects.
- Failure: `Exception`.

### Examples

#### List all datasets

```python
for dataset in rag_object.list_datasets():
    print(dataset)
```

#### Retrieve a dataset by ID

```python
dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])
```

---

## Update dataset

```python
DataSet.update(update_message: dict)
```

Updates configurations for the current dataset.

### Parameters

#### update_message: `dict[str, str|int]`, *Required*

A dictionary representing the attributes to update, with the following keys:

- `"name"`: `str` The revised name of the dataset.
- `"embedding_model"`: `str` The updated embedding model name.
  - Ensure that `"chunk_count"` is `0` before updating `"embedding_model"`.
- `"chunk_method"`: `str` The chunking method for the dataset. Available options:
  - `"naive"`: General
  - `"manual`: Manual
  - `"qa"`: Q&A
  - `"table"`: Table
  - `"paper"`: Paper
  - `"book"`: Book
  - `"laws"`: Laws
  - `"presentation"`: Presentation
  - `"picture"`: Picture
  - `"one"`: One
  - `"email"`: Email
  - `"knowledge_graph"`: Knowledge Graph  
    Ensure your LLM is properly configured on the **Settings** page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_name")
dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})
```

---

:::tip API GROUPING
File Management within Dataset
:::

---

## Upload documents

```python
DataSet.upload_documents(document_list: list[dict])
```

Uploads documents to the current dataset.

### Parameters

#### document_list: `list[dict]`, *Required*

A list of dictionaries representing the documents to upload, each containing the following keys:

- `"display_name"`: (Optional) The file name to display in the dataset.  
- `"blob"`: (Optional) The binary content of the file to upload.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
dataset = rag_object.create_dataset(name="kb_name")
dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])
```

---

## Update document

```python
Document.update(update_message:dict)
```

Updates configurations for the current document.

### Parameters

#### update_message: `dict[str, str|dict[]]`, *Required*

A dictionary representing the attributes to update, with the following keys:

- `"display_name"`: `str` The name of the document to update.
- `"chunk_method"`: `str` The parsing method to apply to the document.
  - `"naive"`: General
  - `"manual`: Manual
  - `"qa"`: Q&A
  - `"table"`: Table
  - `"paper"`: Paper
  - `"book"`: Book
  - `"laws"`: Laws
  - `"presentation"`: Presentation
  - `"picture"`: Picture
  - `"one"`: One
  - `"knowledge_graph"`: Knowledge Graph  
    Ensure your LLM is properly configured on the **Settings** page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
  - `"email"`: Email
- `"parser_config"`: `dict[str, Any]` The parsing configuration for the document. Its attributes vary based on the selected `"chunk_method"`:
  - `"chunk_method"`=`"naive"`:  
    `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}`.
  - `chunk_method`=`"qa"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"manuel"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"table"`:  
    `None`
  - `chunk_method`=`"paper"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"book"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"laws"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"presentation"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"picture"`:  
    `None`
  - `chunk_method`=`"one"`:  
    `None`
  - `chunk_method`=`"knowledge-graph"`:  
    `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}`
  - `chunk_method`=`"email"`:  
    `None`

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id='id')
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])
```

---

## Download document

```python
Document.download() -> bytes
```

Downloads the current document.

### Returns

The downloaded document in bytes.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="id")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)
```

---

## List documents

```python
Dataset.list_documents(id:str =None, keywords: str=None, page: int=1, page_size:int = 30, order_by:str = "create_time", desc: bool = True) -> list[Document]
```

Lists documents in the current dataset.

### Parameters

#### id: `str`

The ID of the document to retrieve. Defaults to `None`.

#### keywords: `str`

The keywords used to match document titles. Defaults to `None`.

#### page: `int`

Specifies the page on which the documents will be displayed. Defaults to `1`.

#### page_size: `int`

The maximum number of documents on each page. Defaults to `30`.

#### orderby: `str`

The field by which documents should be sorted. Available options:

- `"create_time"` (default)
- `"update_time"`

#### desc: `bool`

Indicates whether the retrieved documents should be sorted in descending order. Defaults to `True`.

### Returns

- Success: A list of `Document` objects.
- Failure: `Exception`.

A `Document` object contains the following attributes:

- `id`: The document ID. Defaults to `""`.
- `name`: The document name. Defaults to `""`.
- `thumbnail`: The thumbnail image of the document. Defaults to `None`.
- `dataset_id`: The dataset ID associated with the document. Defaults to `None`.
- `chunk_method` The chunk method name. Defaults to `"naive"`.
- `source_type`: The source type of the document. Defaults to `"local"`.
- `type`: Type or category of the document. Defaults to `""`. Reserved for future use.
- `created_by`: `str` The creator of the document. Defaults to `""`.
- `size`: `int` The document size in bytes. Defaults to `0`.
- `token_count`: `int` The number of tokens in the document. Defaults to `0`.
- `chunk_count`: `int` The number of chunks in the document. Defaults to `0`.
- `progress`: `float` The current processing progress as a percentage. Defaults to `0.0`.
- `progress_msg`: `str` A message indicating the current progress status. Defaults to `""`.
- `process_begin_at`: `datetime` The start time of document processing. Defaults to `None`.
- `process_duation`: `float` Duration of the processing in seconds. Defaults to `0.0`.
- `run`: `str` The document's processing status:
  - `"UNSTART"`  (default)
  - `"RUNNING"`
  - `"CANCEL"`
  - `"DONE"`
  - `"FAIL"`
- `status`: `str` Reserved for future use.
- `parser_config`: `ParserConfig` Configuration object for the parser. Its attributes vary based on the selected `chunk_method`:
  - `chunk_method`=`"naive"`:  
    `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}`.
  - `chunk_method`=`"qa"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"manuel"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"table"`:  
    `None`
  - `chunk_method`=`"paper"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"book"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"laws"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"presentation"`:  
    `{"raptor": {"user_raptor": False}}`
  - `chunk_method`=`"picure"`:  
    `None`
  - `chunk_method`=`"one"`:  
    `None`
  - `chunk_method`=`"knowledge-graph"`:  
    `{"chunk_token_num":128,"delimiter": "\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}`
  - `chunk_method`=`"email"`:  
    `None`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")

filename1 = "~/ragflow.txt"
blob = open(filename1 , "rb").read()
dataset.upload_documents([{"name":filename1,"blob":blob}])
for doc in dataset.list_documents(keywords="rag", page=0, page_size=12):
    print(doc)
```

---

## Delete documents

```python
DataSet.delete_documents(ids: list[str] = None)
```

Deletes documents by ID.

### Parameters

#### ids: `list[list]`

The IDs of the documents to delete. Defaults to `None`. If it is not specified, all documents in the dataset will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.delete_documents(ids=["id_1","id_2"])
```

---

## Parse documents

```python
DataSet.async_parse_documents(document_ids:list[str]) -> None
```

Parses documents in the current dataset.

### Parameters

#### document_ids: `list[str]`, *Required*

The IDs of the documents to parse.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
    {'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
    {'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
    {'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
    ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
```

---

## Stop parsing documents

```python
DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
```

Stops parsing specified documents.

### Parameters

#### document_ids: `list[str]`, *Required*

The IDs of the documents for which parsing should be stopped.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
    {'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
    {'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
    {'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
    ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
dataset.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled.")
```

---

## Add chunk

```python
Document.add_chunk(content:str, important_keywords:list[str] = []) -> Chunk
```

Adds a chunk to the current document.

### Parameters

#### content: `str`, *Required*

The text content of the chunk.

#### important_keywords: `list[str]`

The key terms or phrases to tag with the chunk.

### Returns

- Success: A `Chunk` object.
- Failure: `Exception`.

A `Chunk` object contains the following attributes:

- `id`: `str`: The chunk ID.
- `content`: `str` The text content of the chunk.
- `important_keywords`: `list[str]` A list of key terms or phrases tagged with the chunk.
- `create_time`: `str` The time when the chunk was created (added to the document).
- `create_timestamp`: `float` The timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.
- `dataset_id`: `str` The ID of the associated dataset.
- `document_name`: `str` The name of the associated document.
- `document_id`: `str` The ID of the associated document.
- `available`: `bool` The chunk's availability status in the dataset. Value options:
  - `False`: Unavailable
  - `True`: Available (default)


### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dtaset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
```

---

## List chunks

```python
Document.list_chunks(keywords: str = None, page: int = 1, page_size: int = 30, id : str = None) -> list[Chunk]
```

Lists chunks in the current document.

### Parameters

#### keywords: `str`

The keywords used to match chunk content. Defaults to `None`

#### page: `int`

Specifies the page on which the chunks will be displayed. Defaults to `1`.

#### page_size: `int`

The maximum number of chunks on each page. Defaults to `30`.

#### id: `str`

The ID of the chunk to retrieve. Default: `None`

### Returns

- Success: A list of `Chunk` objects.
- Failure: `Exception`.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets("123")
dataset = dataset[0]
dataset.async_parse_documents(["wdfxb5t547d"])
for chunk in doc.list_chunks(keywords="rag", page=0, page_size=12):
    print(chunk)
```

---

## Delete chunks

```python
Document.delete_chunks(chunk_ids: list[str])
```

Deletes chunks by ID.

### Parameters

#### chunk_ids: `list[str]`

The IDs of the chunks to delete. Defaults to `None`. If it is not specified, all chunks of the current document will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])
```

---

## Update chunk

```python
Chunk.update(update_message: dict)
```

Updates content or configurations for the current chunk.

### Parameters

#### update_message: `dict[str, str|list[str]|int]` *Required*

A dictionary representing the attributes to update, with the following keys:

- `"content"`: `str` The text content of the chunk.
- `"important_keywords"`: `list[str]` A list of key terms or phrases to tag with the chunk.
- `"available"`: `bool` The chunk's availability status in the dataset. Value options:
  - `False`: Unavailable
  - `True`: Available (default)

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx..."})
```

---

## Retrieve chunks

```python
RAGFlow.retrieve(question:str="", dataset_ids:list[str]=None, document_ids=list[str]=None, page:int=1, page_size:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
```

Retrieves chunks from specified datasets.

### Parameters

#### question: `str`, *Required*

The user query or query keywords. Defaults to `""`.

#### dataset_ids: `list[str]`, *Required*

The IDs of the datasets to search. Defaults to `None`. If you do not set this argument, ensure that you set `document_ids`.

#### document_ids: `list[str]`

The IDs of the documents to search. Defaults to `None`. You must ensure all selected documents use the same embedding model. Otherwise, an error will occur. If you do not set this argument, ensure that you set `dataset_ids`.

#### page: `int`

The starting index for the documents to retrieve. Defaults to `1`.

#### page_size: `int`

The maximum number of chunks to retrieve. Defaults to `30`.

#### Similarity_threshold: `float`

The minimum similarity score. Defaults to `0.2`.

#### vector_similarity_weight: `float`

The weight of vector cosine similarity. Defaults to `0.3`. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.

#### top_k: `int`

The number of chunks engaged in vector cosine computaton. Defaults to `1024`.

#### rerank_id: `str`

The ID of the rerank model. Defaults to `None`.

#### keyword: `bool`

Indicates whether to enable keyword-based matching:

- `True`: Enable keyword-based matching.
- `False`: Disable keyword-based matching (default).

#### highlight: `bool`

Specifies whether to enable highlighting of matched terms in the results:

- `True`: Enable highlighting of matched terms.
- `False`: Disable highlighting of matched terms (default).

### Returns

- Success: A list of `Chunk` objects representing the document chunks.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="ragflow")
dataset = dataset[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag_object.create_document(dataset, name=name, blob=open(path, "rb").read())
doc = dataset.list_documents(name=name)
doc = doc[0]
dataset.async_parse_documents([doc.id])
for c in rag_object.retrieve(question="What's ragflow?", 
             dataset_ids=[dataset.id], document_ids=[doc.id], 
             page=1, page_size=30, similarity_threshold=0.2, 
             vector_similarity_weight=0.3,
             top_k=1024
             ):
    print(c)
```

---

:::tip API GROUPING
Chat Assistant Management
:::

---

## Create chat assistant

```python
RAGFlow.create_chat(
    name: str, 
    avatar: str = "", 
    dataset_ids: list[str] = [], 
    llm: Chat.LLM = None, 
    prompt: Chat.Prompt = None
) -> Chat
```

Creates a chat assistant.

### Parameters

#### name: `str`, *Required*

The name of the chat assistant.

#### avatar: `str`

Base64 encoding of the avatar. Defaults to `""`.

#### dataset_ids: `list[str]`

The IDs of the associated datasets. Defaults to `[""]`.

#### llm: `Chat.LLM`

The LLM settings for the chat assistant to create. Defaults to `None`. When the value is `None`, a dictionary with the following values will be generated as the default. An `LLM` object contains the following attributes:

- `model_name`: `str`  
  The chat model name. If it is `None`, the user's default chat model will be used.  
- `temperature`: `float`  
  Controls the randomness of the model's predictions. A lower temperature increases the model's confidence in its responses; a higher temperature increases creativity and diversity. Defaults to `0.1`.  
- `top_p`: `float`  
  Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to `0.3`  
- `presence_penalty`: `float`  
  This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to `0.2`.
- `frequency penalty`: `float`  
  Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to `0.7`.
- `max_token`: `int`  
  The maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to `512`.

#### prompt: `Chat.Prompt`

Instructions for the LLM to follow.  A `Prompt` object contains the following attributes:

- `similarity_threshold`: `float` RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is `0.2`.
- `keywords_similarity_weight`: `float` This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is `0.7`.
- `top_n`: `int` This argument specifies the number of top chunks with similarity scores above the `similarity_threshold` that are fed to the LLM. The LLM will *only* access these 'top N' chunks.  The default value is `8`.
- `variables`: `list[dict[]]` This argument lists the variables to use in the 'System' field of **Chat Configurations**. Note that:
  - `knowledge` is a reserved variable, which represents the retrieved chunks.
  - All the variables in 'System' should be curly bracketed.
  - The default value is `[{"key": "knowledge", "optional": True}]`.
- `rerank_model`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
- `empty_response`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is found, leave this blank. Defaults to `None`.
- `opener`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
- `show_quote`: `bool` Indicates whether the source of text should be displayed. Defaults to `True`.
- `prompt`: `str` The prompt content.

### Returns

- Success: A `Chat` object representing the chat assistant.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_ids = []
for dataset in datasets:
    dataset_ids.append(dataset.id)
assistant = rag_object.create_chat("Miss R", dataset_ids=dataset_ids)
```

---

## Update chat assistant

```python
Chat.update(update_message: dict)
```

Updates configurations for the current chat assistant.

### Parameters

#### update_message: `dict[str, str|list[str]|dict[]]`, *Required*

A dictionary representing the attributes to update, with the following keys:

- `"name"`: `str` The revised name of the chat assistant.
- `"avatar"`: `str` Base64 encoding of the avatar. Defaults to `""`
- `"dataset_ids"`: `list[str]` The datasets to update.
- `"llm"`: `dict` The LLM settings:
  - `"model_name"`, `str` The chat model name.
  - `"temperature"`, `float` Controls the randomness of the model's predictions.  
  - `"top_p"`, `float` Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from.  
  - `"presence_penalty"`, `float` This discourages the model from repeating the same information by penalizing words that have appeared in the conversation.
  - `"frequency penalty"`, `float` Similar to presence penalty, this reduces the model’s tendency to repeat the same words.
  - `"max_token"`, `int` The maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
- `"prompt"` : Instructions for the LLM to follow.
  - `"similarity_threshold"`: `float` RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted rerank score during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is `0.2`.
  - `"keywords_similarity_weight"`: `float` This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is `0.7`.
  - `"top_n"`: `int` This argument specifies the number of top chunks with similarity scores above the `similarity_threshold` that are fed to the LLM. The LLM will *only* access these 'top N' chunks.  The default value is `8`.
  - `"variables"`: `list[dict[]]`  This argument lists the variables to use in the 'System' field of **Chat Configurations**. Note that:
    - `knowledge` is a reserved variable, which represents the retrieved chunks.
    - All the variables in 'System' should be curly bracketed.
    - The default value is `[{"key": "knowledge", "optional": True}]`.
  - `"rerank_model"`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
  - `"empty_response"`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to `None`.
  - `"opener"`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
  - `"show_quote`: `bool` Indicates whether the source of text should be displayed Defaults to `True`.
  - `"prompt"`: `str` The prompt content.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_id = datasets[0].id
assistant = rag_object.create_chat("Miss R", dataset_ids=[dataset_id])
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
```

---

## Delete chat assistants

```python
RAGFlow.delete_chats(ids: list[str] = None)
```

Deletes chat assistants by ID.

### Parameters

#### ids: `list[str]`

The IDs of the chat assistants to delete. Defaults to `None`. If it is empty or not specified, all chat assistants in the system will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag_object.delete_chats(ids=["id_1","id_2"])
```

---

## List chat assistants

```python
RAGFlow.list_chats(
    page: int = 1, 
    page_size: int = 30, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    name: str = None
) -> list[Chat]
```

Lists chat assistants.

### Parameters

#### page: `int`

Specifies the page on which the chat assistants will be displayed. Defaults to `1`.

#### page_size: `int`

The number of chat assistants on each page. Defaults to `30`.

#### orderby: `str`

The attribute by which the results are sorted. Available options:

- `"create_time"` (default)
- `"update_time"`

#### desc: `bool`

Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to `True`.

#### id: `str`  

The ID of the chat assistant to retrieve. Defaults to `None`.

#### name: `str`  

The name of the chat assistant to retrieve. Defaults to `None`.

### Returns

- Success: A list of `Chat` objects.
- Failure: `Exception`.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag_object.list_chats():
    print(assistant)
```

---

:::tip API GROUPING
Chat Session APIs
:::

---

## Create session with chat assistant

```python
Chat.create_session(name: str = "New session") -> Session
```

Creates a session with the current chat assistant.

### Parameters

#### name: `str`

The name of the chat session to create.

### Returns

- Success: A `Session` object containing the following attributes:
  - `id`: `str` The auto-generated unique identifier of the created session.
  - `name`: `str` The name of the created session.
  - `message`: `list[Message]` The messages of the created session assistant. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
  - `chat_id`: `str` The ID of the associated chat assistant.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
```

---

## Update chat assistant's session

```python
Session.update(update_message: dict)
```

Updates the current session of the current chat assistant.

### Parameters

#### update_message: `dict[str, Any]`, *Required*

A dictionary representing the attributes to update, with only one key:

- `"name"`: `str` The revised name of the session.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})
```

---

## List chat assistant's sessions

```python
Chat.list_sessions(
    page: int = 1, 
    page_size: int = 30, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    name: str = None
) -> list[Session]
```

Lists sessions associated with the current chat assistant.

### Parameters

#### page: `int`

Specifies the page on which the sessions will be displayed. Defaults to `1`.

#### page_size: `int`

The number of sessions on each page. Defaults to `30`.

#### orderby: `str`

The field by which sessions should be sorted. Available options:

- `"create_time"` (default)
- `"update_time"`

#### desc: `bool`

Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.

#### id: `str`

The ID of the chat session to retrieve. Defaults to `None`.

#### name: `str`

The name of the chat session to retrieve. Defaults to `None`.

### Returns

- Success: A list of `Session` objects associated with the current chat assistant.
- Failure: `Exception`.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
    print(session)
```

---

## Delete chat assistant's sessions

```python
Chat.delete_sessions(ids:list[str] = None)
```

Deletes sessions of the current chat assistant by ID.

### Parameters

#### ids: `list[str]`

The IDs of the sessions to delete. Defaults to `None`. If it is not specified, all sessions associated with the current chat assistant will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])
```

---

## Converse with chat assistant

```python
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
```

Asks a specified chat assistant a question to start an AI-powered conversation.

:::tip NOTE
In streaming mode, not all responses include a reference, as this depends on the system's judgement.
:::

### Parameters

#### question: `str`, *Required*

The question to start an AI-powered conversation.

#### stream: `bool`

Indicates whether to output responses in a streaming way:

- `True`: Enable streaming (default).
- `False`: Disable streaming.

### Returns

- A `Message` object containing the response to the question if `stream` is set to `False`
- An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`

The following shows the attributes of a `Message` object:

#### id: `str`

The auto-generated message ID.

#### content: `str`

The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.

#### reference: `list[Chunk]`

A list of `Chunk` objects representing references to the message, each containing the following attributes:

- `id` `str`  
  The chunk ID.
- `content` `str`  
  The content of the chunk.
- `img_id` `str`  
  The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
- `document_id` `str`  
  The ID of the referenced document.
- `document_name` `str`  
  The name of the referenced document.
- `position` `list[str]`  
  The location information of the chunk within the referenced document.
- `dataset_id` `str`  
  The ID of the dataset to which the referenced document belongs.
- `similarity` `float`  
  A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity. It is the weighted sum of `vector_similarity` and `term_similarity`.
- `vector_similarity` `float`  
  A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
- `term_similarity` `float`  
  A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()    

print("\n==================== Miss R =====================\n")
print("Hello. What can I do for you?")

while True:
    question = input("\n==================== User =====================\n> ")
    print("\n==================== Miss R =====================\n")
    
    cont = ""
    for ans in session.ask(question, stream=True):
        print(ans.content[len(cont):], end='', flush=True)
        cont = ans.content
```

---

## Create session with agent

```python
Agent.create_session(id,rag) -> Session
```

Creates a  session with the current agent.

### Returns

- Success: A `Session` object containing the following attributes:
  - `id`: `str` The auto-generated unique identifier of the created session.
  - `message`: `list[Message]` The messages of the created session assistant. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
  - `agent_id`: `str` The ID of the associated agent assistant.
- Failure: `Exception`

### Examples

```python
from ragflow_sdk import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
AGENT_ID = "AGENT_ID"
session = create_session(AGENT_ID,rag_object)
```

---

## Converse with agent

```python
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
```

Asks a specified agent a question to start an AI-powered conversation.

:::tip NOTE
In streaming mode, not all responses include a reference, as this depends on the system's judgement.
:::

### Parameters

#### question: `str`, *Required*

The question to start an AI-powered conversation.

#### stream: `bool`

Indicates whether to output responses in a streaming way:

- `True`: Enable streaming (default).
- `False`: Disable streaming.

### Returns

- A `Message` object containing the response to the question if `stream` is set to `False`
- An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`

The following shows the attributes of a `Message` object:

#### id: `str`

The auto-generated message ID.

#### content: `str`

The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.

#### reference: `list[Chunk]`

A list of `Chunk` objects representing references to the message, each containing the following attributes:

- `id` `str`  
  The chunk ID.
- `content` `str`  
  The content of the chunk.
- `image_id` `str`  
  The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
- `document_id` `str`  
  The ID of the referenced document.
- `document_name` `str`  
  The name of the referenced document.
- `position` `list[str]`  
  The location information of the chunk within the referenced document.
- `dataset_id` `str`  
  The ID of the dataset to which the referenced document belongs.
- `similarity` `float`  
  A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity. It is the weighted sum of `vector_similarity` and `term_similarity`.
- `vector_similarity` `float`  
  A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
- `term_similarity` `float`  
  A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.

### Examples

```python
from ragflow_sdk import RAGFlow,Agent

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
AGENT_id = "AGENT_ID"
session = Agent.create_session(AGENT_id,rag_object)    

print("\n===== Miss R ====\n")
print("Hello. What can I do for you?")

while True:
    question = input("\n===== User ====\n> ")
    print("\n==== Miss R ====\n")
    
    cont = ""
    for ans in session.ask(question, stream=True):
        print(ans.content[len(cont):], end='', flush=True)
        cont = ans.content
```