liuhua
liuhua
commited on
Commit
·
e9078f4
1
Parent(s):
24b9cdf
Add sdk for Agent API (#3220)
Browse files### What problem does this PR solve?
Add sdk for Agent API
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
---------
Co-authored-by: liuhua <[email protected]>
- api/apps/sdk/session.py +63 -13
- docs/references/http_api_reference.md +269 -35
- docs/references/python_api_reference.md +113 -2
- sdk/python/ragflow_sdk/__init__.py +2 -1
- sdk/python/ragflow_sdk/modules/agent.py +59 -0
- sdk/python/ragflow_sdk/modules/session.py +23 -39
- sdk/python/test/t_session.py +17 -2
api/apps/sdk/session.py
CHANGED
@@ -74,11 +74,12 @@ def create_agent_session(tenant_id, agent_id):
|
|
74 |
conv = {
|
75 |
"id": get_uuid(),
|
76 |
"dialog_id": cvs.id,
|
77 |
-
"user_id": req.get("
|
78 |
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
|
79 |
"source": "agent"
|
80 |
}
|
81 |
API4ConversationService.save(**conv)
|
|
|
82 |
return get_result(data=conv)
|
83 |
|
84 |
|
@@ -150,6 +151,25 @@ def completion(tenant_id, chat_id):
|
|
150 |
conv.reference.append({"chunks": [], "doc_aggs": []})
|
151 |
|
152 |
def fillin_conv(ans):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
nonlocal conv, message_id
|
154 |
if not conv.reference:
|
155 |
conv.reference.append(ans["reference"])
|
@@ -179,6 +199,7 @@ def completion(tenant_id, chat_id):
|
|
179 |
resp.headers.add_header("Connection", "keep-alive")
|
180 |
resp.headers.add_header("X-Accel-Buffering", "no")
|
181 |
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
|
182 |
return resp
|
183 |
|
184 |
else:
|
@@ -195,6 +216,7 @@ def completion(tenant_id, chat_id):
|
|
195 |
@token_required
|
196 |
def agent_completion(tenant_id, agent_id):
|
197 |
req = request.json
|
|
|
198 |
e, cvs = UserCanvasService.get_by_id(agent_id)
|
199 |
if not e:
|
200 |
return get_error_data_result("Agent not found.")
|
@@ -202,25 +224,14 @@ def agent_completion(tenant_id, agent_id):
|
|
202 |
return get_error_data_result(message="You do not own the agent.")
|
203 |
if not isinstance(cvs.dsl, str):
|
204 |
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
205 |
-
|
206 |
canvas = Canvas(cvs.dsl, tenant_id)
|
207 |
|
208 |
-
msg = []
|
209 |
-
for m in req["messages"]:
|
210 |
-
if m["role"] == "system":
|
211 |
-
continue
|
212 |
-
if m["role"] == "assistant" and not msg:
|
213 |
-
continue
|
214 |
-
msg.append(m)
|
215 |
-
if not msg[-1].get("id"): msg[-1]["id"] = get_uuid()
|
216 |
-
message_id = msg[-1]["id"]
|
217 |
-
|
218 |
if not req.get("session_id"):
|
219 |
session_id = get_uuid()
|
220 |
conv = {
|
221 |
"id": session_id,
|
222 |
"dialog_id": cvs.id,
|
223 |
-
"user_id": req.get("user_id",
|
224 |
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
|
225 |
"source": "agent"
|
226 |
}
|
@@ -232,10 +243,49 @@ def agent_completion(tenant_id, agent_id):
|
|
232 |
if not e:
|
233 |
return get_error_data_result(message="Session not found!")
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
if "quote" not in req: req["quote"] = False
|
236 |
stream = req.get("stream", True)
|
237 |
|
238 |
def fillin_conv(ans):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
nonlocal conv, message_id
|
240 |
if not conv.reference:
|
241 |
conv.reference.append(ans["reference"])
|
|
|
74 |
conv = {
|
75 |
"id": get_uuid(),
|
76 |
"dialog_id": cvs.id,
|
77 |
+
"user_id": req.get("usr_id",""),
|
78 |
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
|
79 |
"source": "agent"
|
80 |
}
|
81 |
API4ConversationService.save(**conv)
|
82 |
+
conv["agent_id"] = conv.pop("dialog_id")
|
83 |
return get_result(data=conv)
|
84 |
|
85 |
|
|
|
151 |
conv.reference.append({"chunks": [], "doc_aggs": []})
|
152 |
|
153 |
def fillin_conv(ans):
|
154 |
+
reference = ans["reference"]
|
155 |
+
if "chunks" in reference:
|
156 |
+
chunks = reference.get("chunks")
|
157 |
+
chunk_list = []
|
158 |
+
for chunk in chunks:
|
159 |
+
new_chunk = {
|
160 |
+
"id": chunk["chunk_id"],
|
161 |
+
"content": chunk["content_with_weight"],
|
162 |
+
"document_id": chunk["doc_id"],
|
163 |
+
"document_name": chunk["docnm_kwd"],
|
164 |
+
"dataset_id": chunk["kb_id"],
|
165 |
+
"image_id": chunk["img_id"],
|
166 |
+
"similarity": chunk["similarity"],
|
167 |
+
"vector_similarity": chunk["vector_similarity"],
|
168 |
+
"term_similarity": chunk["term_similarity"],
|
169 |
+
"positions": chunk["positions"],
|
170 |
+
}
|
171 |
+
chunk_list.append(new_chunk)
|
172 |
+
reference["chunks"] = chunk_list
|
173 |
nonlocal conv, message_id
|
174 |
if not conv.reference:
|
175 |
conv.reference.append(ans["reference"])
|
|
|
199 |
resp.headers.add_header("Connection", "keep-alive")
|
200 |
resp.headers.add_header("X-Accel-Buffering", "no")
|
201 |
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
202 |
+
|
203 |
return resp
|
204 |
|
205 |
else:
|
|
|
216 |
@token_required
|
217 |
def agent_completion(tenant_id, agent_id):
|
218 |
req = request.json
|
219 |
+
|
220 |
e, cvs = UserCanvasService.get_by_id(agent_id)
|
221 |
if not e:
|
222 |
return get_error_data_result("Agent not found.")
|
|
|
224 |
return get_error_data_result(message="You do not own the agent.")
|
225 |
if not isinstance(cvs.dsl, str):
|
226 |
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
|
|
227 |
canvas = Canvas(cvs.dsl, tenant_id)
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
if not req.get("session_id"):
|
230 |
session_id = get_uuid()
|
231 |
conv = {
|
232 |
"id": session_id,
|
233 |
"dialog_id": cvs.id,
|
234 |
+
"user_id": req.get("user_id",""),
|
235 |
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
|
236 |
"source": "agent"
|
237 |
}
|
|
|
243 |
if not e:
|
244 |
return get_error_data_result(message="Session not found!")
|
245 |
|
246 |
+
messages = conv.message
|
247 |
+
question = req.get("question")
|
248 |
+
if not question:
|
249 |
+
return get_error_data_result("`question` is required.")
|
250 |
+
question={
|
251 |
+
"role":"user",
|
252 |
+
"content":question,
|
253 |
+
"id": str(uuid4())
|
254 |
+
}
|
255 |
+
messages.append(question)
|
256 |
+
msg = []
|
257 |
+
for m in messages:
|
258 |
+
if m["role"] == "system":
|
259 |
+
continue
|
260 |
+
if m["role"] == "assistant" and not msg:
|
261 |
+
continue
|
262 |
+
msg.append(m)
|
263 |
+
if not msg[-1].get("id"): msg[-1]["id"] = get_uuid()
|
264 |
+
message_id = msg[-1]["id"]
|
265 |
+
|
266 |
if "quote" not in req: req["quote"] = False
|
267 |
stream = req.get("stream", True)
|
268 |
|
269 |
def fillin_conv(ans):
|
270 |
+
reference = ans["reference"]
|
271 |
+
if "chunks" in reference:
|
272 |
+
chunks = reference.get("chunks")
|
273 |
+
chunk_list = []
|
274 |
+
for chunk in chunks:
|
275 |
+
new_chunk = {
|
276 |
+
"id": chunk["chunk_id"],
|
277 |
+
"content": chunk["content_with_weight"],
|
278 |
+
"document_id": chunk["doc_id"],
|
279 |
+
"document_name": chunk["docnm_kwd"],
|
280 |
+
"dataset_id": chunk["kb_id"],
|
281 |
+
"image_id": chunk["img_id"],
|
282 |
+
"similarity": chunk["similarity"],
|
283 |
+
"vector_similarity": chunk["vector_similarity"],
|
284 |
+
"term_similarity": chunk["term_similarity"],
|
285 |
+
"positions": chunk["positions"],
|
286 |
+
}
|
287 |
+
chunk_list.append(new_chunk)
|
288 |
+
reference["chunks"] = chunk_list
|
289 |
nonlocal conv, message_id
|
290 |
if not conv.reference:
|
291 |
conv.reference.append(ans["reference"])
|
docs/references/http_api_reference.md
CHANGED
@@ -2018,59 +2018,54 @@ curl --request POST \
|
|
2018 |
|
2019 |
Success:
|
2020 |
|
2021 |
-
```
|
2022 |
-
data:
|
2023 |
"code": 0,
|
2024 |
"data": {
|
2025 |
-
"answer": "I am an intelligent assistant designed to help
|
2026 |
"reference": {},
|
2027 |
"audio_binary": null,
|
2028 |
-
"id": "
|
2029 |
-
"session_id": "
|
2030 |
}
|
2031 |
}
|
2032 |
-
|
2033 |
-
data: {
|
2034 |
"code": 0,
|
2035 |
"data": {
|
2036 |
-
"answer": "I am an intelligent assistant designed to help
|
2037 |
"reference": {},
|
2038 |
"audio_binary": null,
|
2039 |
-
"id": "
|
2040 |
-
"session_id": "
|
2041 |
}
|
2042 |
}
|
2043 |
-
|
2044 |
-
data: {
|
2045 |
"code": 0,
|
2046 |
"data": {
|
2047 |
-
"answer": "I am an intelligent assistant designed to help
|
2048 |
"reference": {},
|
2049 |
"audio_binary": null,
|
2050 |
-
"id": "
|
2051 |
-
"session_id": "
|
2052 |
}
|
2053 |
}
|
2054 |
-
|
2055 |
-
data: {
|
2056 |
"code": 0,
|
2057 |
"data": {
|
2058 |
-
"answer": "I am an intelligent assistant designed to help
|
2059 |
"reference": {
|
2060 |
-
"total":
|
2061 |
"chunks": [
|
2062 |
{
|
2063 |
-
"
|
2064 |
-
"
|
2065 |
-
"
|
2066 |
-
"
|
2067 |
-
"
|
2068 |
-
"
|
2069 |
-
"
|
2070 |
-
"
|
2071 |
-
"
|
2072 |
-
"vector_similarity": 0.3843936320913369,
|
2073 |
-
"term_similarity": 0.4699379611632138,
|
2074 |
"positions": [
|
2075 |
""
|
2076 |
]
|
@@ -2079,17 +2074,16 @@ data: {
|
|
2079 |
"doc_aggs": [
|
2080 |
{
|
2081 |
"doc_name": "1.txt",
|
2082 |
-
"doc_id": "
|
2083 |
"count": 1
|
2084 |
}
|
2085 |
]
|
2086 |
},
|
2087 |
-
"prompt": "
|
2088 |
-
"id": "
|
2089 |
-
"session_id": "
|
2090 |
}
|
2091 |
}
|
2092 |
-
|
2093 |
data:{
|
2094 |
"code": 0,
|
2095 |
"data": true
|
@@ -2103,4 +2097,244 @@ Failure:
|
|
2103 |
"code": 102,
|
2104 |
"message": "Please input your question."
|
2105 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2106 |
```
|
|
|
2018 |
|
2019 |
Success:
|
2020 |
|
2021 |
+
```text
|
2022 |
+
data:{
|
2023 |
"code": 0,
|
2024 |
"data": {
|
2025 |
+
"answer": "I am an intelligent assistant designed to help answer questions by summarizing content from a",
|
2026 |
"reference": {},
|
2027 |
"audio_binary": null,
|
2028 |
+
"id": "a84c5dd4-97b4-4624-8c3b-974012c8000d",
|
2029 |
+
"session_id": "82b0ab2a9c1911ef9d870242ac120006"
|
2030 |
}
|
2031 |
}
|
2032 |
+
data:{
|
|
|
2033 |
"code": 0,
|
2034 |
"data": {
|
2035 |
+
"answer": "I am an intelligent assistant designed to help answer questions by summarizing content from a knowledge base. My responses are based on the information available in the knowledge base and",
|
2036 |
"reference": {},
|
2037 |
"audio_binary": null,
|
2038 |
+
"id": "a84c5dd4-97b4-4624-8c3b-974012c8000d",
|
2039 |
+
"session_id": "82b0ab2a9c1911ef9d870242ac120006"
|
2040 |
}
|
2041 |
}
|
2042 |
+
data:{
|
|
|
2043 |
"code": 0,
|
2044 |
"data": {
|
2045 |
+
"answer": "I am an intelligent assistant designed to help answer questions by summarizing content from a knowledge base. My responses are based on the information available in the knowledge base and any relevant chat history.",
|
2046 |
"reference": {},
|
2047 |
"audio_binary": null,
|
2048 |
+
"id": "a84c5dd4-97b4-4624-8c3b-974012c8000d",
|
2049 |
+
"session_id": "82b0ab2a9c1911ef9d870242ac120006"
|
2050 |
}
|
2051 |
}
|
2052 |
+
data:{
|
|
|
2053 |
"code": 0,
|
2054 |
"data": {
|
2055 |
+
"answer": "I am an intelligent assistant designed to help answer questions by summarizing content from a knowledge base ##0$$. My responses are based on the information available in the knowledge base and any relevant chat history.",
|
2056 |
"reference": {
|
2057 |
+
"total": 1,
|
2058 |
"chunks": [
|
2059 |
{
|
2060 |
+
"id": "faf26c791128f2d5e821f822671063bd",
|
2061 |
+
"content": "xxxxxxxx",
|
2062 |
+
"document_id": "dd58f58e888511ef89c90242ac120006",
|
2063 |
+
"document_name": "1.txt",
|
2064 |
+
"dataset_id": "8e83e57a884611ef9d760242ac120006",
|
2065 |
+
"image_id": "",
|
2066 |
+
"similarity": 0.7,
|
2067 |
+
"vector_similarity": 0.0,
|
2068 |
+
"term_similarity": 1.0,
|
|
|
|
|
2069 |
"positions": [
|
2070 |
""
|
2071 |
]
|
|
|
2074 |
"doc_aggs": [
|
2075 |
{
|
2076 |
"doc_name": "1.txt",
|
2077 |
+
"doc_id": "dd58f58e888511ef89c90242ac120006",
|
2078 |
"count": 1
|
2079 |
}
|
2080 |
]
|
2081 |
},
|
2082 |
+
"prompt": "xxxxxxxxxxx",
|
2083 |
+
"id": "a84c5dd4-97b4-4624-8c3b-974012c8000d",
|
2084 |
+
"session_id": "82b0ab2a9c1911ef9d870242ac120006"
|
2085 |
}
|
2086 |
}
|
|
|
2087 |
data:{
|
2088 |
"code": 0,
|
2089 |
"data": true
|
|
|
2097 |
"code": 102,
|
2098 |
"message": "Please input your question."
|
2099 |
}
|
2100 |
+
```
|
2101 |
+
|
2102 |
+
## Create agent session
|
2103 |
+
|
2104 |
+
**POST** `/api/v1/agents/{agent_id}/sessions`
|
2105 |
+
|
2106 |
+
Creates an agent session.
|
2107 |
+
|
2108 |
+
### Request
|
2109 |
+
|
2110 |
+
- Method: POST
|
2111 |
+
- URL: `/api/v1/agents/{agent_id}/sessions`
|
2112 |
+
- Headers:
|
2113 |
+
- `'content-Type: application/json'`
|
2114 |
+
- `'Authorization: Bearer <YOUR_API_KEY>'`
|
2115 |
+
- Body:
|
2116 |
+
|
2117 |
+
#### Request example
|
2118 |
+
|
2119 |
+
```bash
|
2120 |
+
curl --request POST \
|
2121 |
+
--url http://{address}/api/v1/agents/{agent_id}/sessions \
|
2122 |
+
--header 'Content-Type: application/json' \
|
2123 |
+
--header 'Authorization: Bearer <YOUR_API_KEY>' \
|
2124 |
+
--data '{
|
2125 |
+
}'
|
2126 |
+
```
|
2127 |
+
|
2128 |
+
#### Request parameters
|
2129 |
+
|
2130 |
+
- `agent_id`: (*Path parameter*)
|
2131 |
+
The ID of the associated agent assistant.
|
2132 |
+
|
2133 |
+
### Response
|
2134 |
+
|
2135 |
+
Success:
|
2136 |
+
|
2137 |
+
```json
|
2138 |
+
{
|
2139 |
+
"code": 0,
|
2140 |
+
"data": {
|
2141 |
+
"agent_id": "2e45b5209c1011efa3e90242ac120006",
|
2142 |
+
"id": "7869e9e49c1711ef92840242ac120006",
|
2143 |
+
"message": [
|
2144 |
+
{
|
2145 |
+
"content": "Hello! I am the HR responsible for recruitment at Infineon. I learned that you are an expert in this field, and I took the liberty of reaching out to you. There is an opportunity I would like to share with you. RAGFlow is currently looking for a senior engineer for your position. I was wondering if you might be interested?",
|
2146 |
+
"role": "assistant"
|
2147 |
+
}
|
2148 |
+
],
|
2149 |
+
"source": "agent",
|
2150 |
+
"user_id": ""
|
2151 |
+
}
|
2152 |
+
}
|
2153 |
+
```
|
2154 |
+
|
2155 |
+
Failure:
|
2156 |
+
|
2157 |
+
```json
|
2158 |
+
{
|
2159 |
+
"code": 102,
|
2160 |
+
"message": "Agent not found."
|
2161 |
+
}
|
2162 |
+
```
|
2163 |
+
|
2164 |
+
|
2165 |
+
|
2166 |
+
## Converse through agent
|
2167 |
+
|
2168 |
+
**POST** `/api/v1/agents/{agent_id}/completions`
|
2169 |
+
#######
|
2170 |
+
Asks a question to start an AI-powered conversation.
|
2171 |
+
|
2172 |
+
### Request
|
2173 |
+
|
2174 |
+
- Method: POST
|
2175 |
+
- URL: `/api/v1/agents/{agent_id}/completions`
|
2176 |
+
- Headers:
|
2177 |
+
- `'content-Type: application/json'`
|
2178 |
+
- `'Authorization: Bearer <YOUR_API_KEY>'`
|
2179 |
+
- Body:
|
2180 |
+
- `"question"`: `string`
|
2181 |
+
- `"stream"`: `boolean`
|
2182 |
+
- `"session_id"`: `string`
|
2183 |
+
|
2184 |
+
#### Request example
|
2185 |
+
|
2186 |
+
```bash
|
2187 |
+
curl --request POST \
|
2188 |
+
--url http://{address}/api/v1/agents/{agent_id}/completions \
|
2189 |
+
--header 'Content-Type: application/json' \
|
2190 |
+
--header 'Authorization: Bearer <YOUR_API_KEY>' \
|
2191 |
+
--data-binary '
|
2192 |
+
{
|
2193 |
+
"question": "What is RAGFlow?",
|
2194 |
+
"stream": true
|
2195 |
+
}'
|
2196 |
+
```
|
2197 |
+
|
2198 |
+
#### Request Parameters
|
2199 |
+
|
2200 |
+
- `agent_id`: (*Path parameter*)
|
2201 |
+
The ID of the associated agent assistant.
|
2202 |
+
- `"question"`: (*Body Parameter*), `string` *Required*
|
2203 |
+
The question to start an AI-powered conversation.
|
2204 |
+
- `"stream"`: (*Body Parameter*), `boolean`
|
2205 |
+
Indicates whether to output responses in a streaming way:
|
2206 |
+
- `true`: Enable streaming.
|
2207 |
+
- `false`: Disable streaming (default).
|
2208 |
+
- `"session_id"`: (*Body Parameter*)
|
2209 |
+
The ID of session. If it is not provided, a new session will be generated.
|
2210 |
+
|
2211 |
+
### Response
|
2212 |
+
|
2213 |
+
Success:
|
2214 |
+
|
2215 |
+
```text
|
2216 |
+
data:{
|
2217 |
+
"code": 0,
|
2218 |
+
"message": "",
|
2219 |
+
"data": {
|
2220 |
+
"answer": "",
|
2221 |
+
"reference": [],
|
2222 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2223 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2224 |
+
}
|
2225 |
+
}
|
2226 |
+
data:{
|
2227 |
+
"code": 0,
|
2228 |
+
"message": "",
|
2229 |
+
"data": {
|
2230 |
+
"answer": "Hello",
|
2231 |
+
"reference": [],
|
2232 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2233 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2234 |
+
}
|
2235 |
+
}
|
2236 |
+
data:{
|
2237 |
+
"code": 0,
|
2238 |
+
"message": "",
|
2239 |
+
"data": {
|
2240 |
+
"answer": "Hello!",
|
2241 |
+
"reference": [],
|
2242 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2243 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2244 |
+
}
|
2245 |
+
}
|
2246 |
+
data:{
|
2247 |
+
"code": 0,
|
2248 |
+
"message": "",
|
2249 |
+
"data": {
|
2250 |
+
"answer": "Hello! How",
|
2251 |
+
"reference": [],
|
2252 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2253 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2254 |
+
}
|
2255 |
+
}
|
2256 |
+
data:{
|
2257 |
+
"code": 0,
|
2258 |
+
"message": "",
|
2259 |
+
"data": {
|
2260 |
+
"answer": "Hello! How can",
|
2261 |
+
"reference": [],
|
2262 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2263 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2264 |
+
}
|
2265 |
+
}
|
2266 |
+
data:{
|
2267 |
+
"code": 0,
|
2268 |
+
"message": "",
|
2269 |
+
"data": {
|
2270 |
+
"answer": "Hello! How can I",
|
2271 |
+
"reference": [],
|
2272 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2273 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2274 |
+
}
|
2275 |
+
}
|
2276 |
+
data:{
|
2277 |
+
"code": 0,
|
2278 |
+
"message": "",
|
2279 |
+
"data": {
|
2280 |
+
"answer": "Hello! How can I assist",
|
2281 |
+
"reference": [],
|
2282 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2283 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2284 |
+
}
|
2285 |
+
}
|
2286 |
+
data:{
|
2287 |
+
"code": 0,
|
2288 |
+
"message": "",
|
2289 |
+
"data": {
|
2290 |
+
"answer": "Hello! How can I assist you",
|
2291 |
+
"reference": [],
|
2292 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2293 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2294 |
+
}
|
2295 |
+
}
|
2296 |
+
data:{
|
2297 |
+
"code": 0,
|
2298 |
+
"message": "",
|
2299 |
+
"data": {
|
2300 |
+
"answer": "Hello! How can I assist you today",
|
2301 |
+
"reference": [],
|
2302 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2303 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2304 |
+
}
|
2305 |
+
}
|
2306 |
+
data:{
|
2307 |
+
"code": 0,
|
2308 |
+
"message": "",
|
2309 |
+
"data": {
|
2310 |
+
"answer": "Hello! How can I assist you today?",
|
2311 |
+
"reference": [],
|
2312 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2313 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2314 |
+
}
|
2315 |
+
}
|
2316 |
+
data:{
|
2317 |
+
"code": 0,
|
2318 |
+
"message": "",
|
2319 |
+
"data": {
|
2320 |
+
"answer": "Hello! How can I assist you today?",
|
2321 |
+
"reference": [],
|
2322 |
+
"id": "7ed5c2e4-aa28-4397-bbed-59664a332aa0",
|
2323 |
+
"session_id": "ce1b4fa89c1811ef85720242ac120006"
|
2324 |
+
}
|
2325 |
+
}
|
2326 |
+
data:{
|
2327 |
+
"code": 0,
|
2328 |
+
"message": "",
|
2329 |
+
"data": true
|
2330 |
+
}
|
2331 |
+
```
|
2332 |
+
|
2333 |
+
Failure:
|
2334 |
+
|
2335 |
+
```json
|
2336 |
+
{
|
2337 |
+
"code": 102,
|
2338 |
+
"message": "`question` is required."
|
2339 |
+
}
|
2340 |
```
|
docs/references/python_api_reference.md
CHANGED
@@ -1387,6 +1387,117 @@ while True:
|
|
1387 |
|
1388 |
cont = ""
|
1389 |
for ans in session.ask(question, stream=True):
|
1390 |
-
print(
|
1391 |
-
cont =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1392 |
```
|
|
|
1387 |
|
1388 |
cont = ""
|
1389 |
for ans in session.ask(question, stream=True):
|
1390 |
+
print(ans.content[len(cont):], end='', flush=True)
|
1391 |
+
cont = ans.content
|
1392 |
+
```
|
1393 |
+
---
|
1394 |
+
|
1395 |
+
## Create agent session
|
1396 |
+
|
1397 |
+
```python
|
1398 |
+
Agent.create_session(id,rag) -> Session
|
1399 |
+
```
|
1400 |
+
|
1401 |
+
Creates a agemt session.
|
1402 |
+
|
1403 |
+
### Returns
|
1404 |
+
|
1405 |
+
- Success: A `Session` object containing the following attributes:
|
1406 |
+
- `id`: `str` The auto-generated unique identifier of the created session.
|
1407 |
+
- `message`: `list[Message]` The messages of the created session assistant. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
|
1408 |
+
- `agnet_id`: `str` The ID of the associated agent assistant.
|
1409 |
+
- Failure: `Exception`
|
1410 |
+
|
1411 |
+
### Examples
|
1412 |
+
|
1413 |
+
```python
|
1414 |
+
from ragflow_sdk import RAGFlow
|
1415 |
+
|
1416 |
+
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
1417 |
+
AGENT_ID = "AGENT_ID"
|
1418 |
+
session = create_session(AGENT_ID,rag_object)
|
1419 |
+
```
|
1420 |
+
---
|
1421 |
+
|
1422 |
+
## Converse through agent
|
1423 |
+
|
1424 |
+
```python
|
1425 |
+
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
|
1426 |
+
```
|
1427 |
+
|
1428 |
+
Asks a question to start an AI-powered conversation.
|
1429 |
+
|
1430 |
+
### Parameters
|
1431 |
+
|
1432 |
+
#### question: `str` *Required*
|
1433 |
+
|
1434 |
+
The question to start an AI-powered conversation.
|
1435 |
+
|
1436 |
+
#### stream: `bool`
|
1437 |
+
|
1438 |
+
Indicates whether to output responses in a streaming way:
|
1439 |
+
|
1440 |
+
- `True`: Enable streaming.
|
1441 |
+
- `False`: Disable streaming (default).
|
1442 |
+
|
1443 |
+
### Returns
|
1444 |
+
|
1445 |
+
- A `Message` object containing the response to the question if `stream` is set to `False`
|
1446 |
+
- An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`
|
1447 |
+
|
1448 |
+
The following shows the attributes of a `Message` object:
|
1449 |
+
|
1450 |
+
#### id: `str`
|
1451 |
+
|
1452 |
+
The auto-generated message ID.
|
1453 |
+
|
1454 |
+
#### content: `str`
|
1455 |
+
|
1456 |
+
The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.
|
1457 |
+
|
1458 |
+
#### reference: `list[Chunk]`
|
1459 |
+
|
1460 |
+
A list of `Chunk` objects representing references to the message, each containing the following attributes:
|
1461 |
+
|
1462 |
+
- `id` `str`
|
1463 |
+
The chunk ID.
|
1464 |
+
- `content` `str`
|
1465 |
+
The content of the chunk.
|
1466 |
+
- `image_id` `str`
|
1467 |
+
The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
|
1468 |
+
- `document_id` `str`
|
1469 |
+
The ID of the referenced document.
|
1470 |
+
- `document_name` `str`
|
1471 |
+
The name of the referenced document.
|
1472 |
+
- `position` `list[str]`
|
1473 |
+
The location information of the chunk within the referenced document.
|
1474 |
+
- `dataset_id` `str`
|
1475 |
+
The ID of the dataset to which the referenced document belongs.
|
1476 |
+
- `similarity` `float`
|
1477 |
+
A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity. It is the weighted sum of `vector_similarity` and `term_similarity`.
|
1478 |
+
- `vector_similarity` `float`
|
1479 |
+
A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
|
1480 |
+
- `term_similarity` `float`
|
1481 |
+
A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.
|
1482 |
+
|
1483 |
+
### Examples
|
1484 |
+
|
1485 |
+
```python
|
1486 |
+
from ragflow_sdk import RAGFlow,Agent
|
1487 |
+
|
1488 |
+
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
1489 |
+
AGENT_id = "AGENT_ID"
|
1490 |
+
session = Agent.create_session(AGENT_id,rag_object)
|
1491 |
+
|
1492 |
+
print("\n==================== Miss R =====================\n")
|
1493 |
+
print("Hello. What can I do for you?")
|
1494 |
+
|
1495 |
+
while True:
|
1496 |
+
question = input("\n==================== User =====================\n> ")
|
1497 |
+
print("\n==================== Miss R =====================\n")
|
1498 |
+
|
1499 |
+
cont = ""
|
1500 |
+
for ans in session.ask(question, stream=True):
|
1501 |
+
print(ans.content[len(cont):], end='', flush=True)
|
1502 |
+
cont = ans.content
|
1503 |
```
|
sdk/python/ragflow_sdk/__init__.py
CHANGED
@@ -7,4 +7,5 @@ from .modules.dataset import DataSet
|
|
7 |
from .modules.chat import Chat
|
8 |
from .modules.session import Session
|
9 |
from .modules.document import Document
|
10 |
-
from .modules.chunk import Chunk
|
|
|
|
7 |
from .modules.chat import Chat
|
8 |
from .modules.session import Session
|
9 |
from .modules.document import Document
|
10 |
+
from .modules.chunk import Chunk
|
11 |
+
from .modules.agent import Agent
|
sdk/python/ragflow_sdk/modules/agent.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import Base
|
2 |
+
from .session import Session
|
3 |
+
import requests
|
4 |
+
|
5 |
+
class Agent(Base):
|
6 |
+
def __init__(self,rag,res_dict):
|
7 |
+
self.id = None
|
8 |
+
self.avatar = None
|
9 |
+
self.canvas_type = None
|
10 |
+
self.description = None
|
11 |
+
self.dsl = None
|
12 |
+
super().__init__(rag, res_dict)
|
13 |
+
|
14 |
+
class Dsl(Base):
|
15 |
+
def __init__(self,rag,res_dict):
|
16 |
+
self.answer = []
|
17 |
+
self.components = {
|
18 |
+
"begin": {
|
19 |
+
"downstream": ["Answer:China"],
|
20 |
+
"obj": {
|
21 |
+
"component_name": "Begin",
|
22 |
+
"params": {}
|
23 |
+
},
|
24 |
+
"upstream": []
|
25 |
+
}
|
26 |
+
}
|
27 |
+
self.graph = {
|
28 |
+
"edges": [],
|
29 |
+
"nodes": [
|
30 |
+
{
|
31 |
+
"data": {
|
32 |
+
"label": "Begin",
|
33 |
+
"name": "begin"
|
34 |
+
},
|
35 |
+
"id": "begin",
|
36 |
+
"position": {
|
37 |
+
"x": 50,
|
38 |
+
"y": 200
|
39 |
+
},
|
40 |
+
"sourcePosition": "left",
|
41 |
+
"targetPosition": "right",
|
42 |
+
"type": "beginNode"
|
43 |
+
}
|
44 |
+
]
|
45 |
+
}
|
46 |
+
self.history = []
|
47 |
+
self.messages = []
|
48 |
+
self.path = []
|
49 |
+
self.reference = []
|
50 |
+
super().__init__(rag,res_dict)
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def create_session(id,rag) -> Session:
|
54 |
+
res = requests.post(f"http://127.0.0.1:9380/api/v1/agents/{id}/sessions",headers={"Authorization": f"Bearer {rag.user_key}"},json={})
|
55 |
+
res = res.json()
|
56 |
+
if res.get("code") == 0:
|
57 |
+
return Session(rag,res.get("data"))
|
58 |
+
raise Exception(res.get("message"))
|
59 |
+
|
sdk/python/ragflow_sdk/modules/session.py
CHANGED
@@ -9,14 +9,19 @@ class Session(Base):
|
|
9 |
self.name = "New session"
|
10 |
self.messages = [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
|
11 |
self.chat_id = None
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
super().__init__(rag, res_dict)
|
13 |
|
14 |
-
def ask(self, question
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
{"question": question, "stream": True,"session_id":self.id}, stream=stream)
|
20 |
for line in res.iter_lines():
|
21 |
line = line.decode("utf-8")
|
22 |
if line.startswith("{"):
|
@@ -33,25 +38,20 @@ class Session(Base):
|
|
33 |
}
|
34 |
if "chunks" in reference:
|
35 |
chunks = reference["chunks"]
|
36 |
-
|
37 |
-
for chunk in chunks:
|
38 |
-
new_chunk = {
|
39 |
-
"id": chunk["chunk_id"],
|
40 |
-
"content": chunk["content_with_weight"],
|
41 |
-
"document_id": chunk["doc_id"],
|
42 |
-
"document_name": chunk["docnm_kwd"],
|
43 |
-
"dataset_id": chunk["kb_id"],
|
44 |
-
"image_id": chunk["img_id"],
|
45 |
-
"similarity": chunk["similarity"],
|
46 |
-
"vector_similarity": chunk["vector_similarity"],
|
47 |
-
"term_similarity": chunk["term_similarity"],
|
48 |
-
"positions": chunk["positions"],
|
49 |
-
}
|
50 |
-
chunk_list.append(new_chunk)
|
51 |
-
temp_dict["reference"] = chunk_list
|
52 |
message = Message(self.rag, temp_dict)
|
53 |
yield message
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def update(self,update_message):
|
56 |
res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}",
|
57 |
update_message)
|
@@ -66,20 +66,4 @@ class Message(Base):
|
|
66 |
self.role = "assistant"
|
67 |
self.prompt = None
|
68 |
self.id = None
|
69 |
-
super().__init__(rag, res_dict)
|
70 |
-
|
71 |
-
|
72 |
-
class Chunk(Base):
|
73 |
-
def __init__(self, rag, res_dict):
|
74 |
-
self.id = None
|
75 |
-
self.content = None
|
76 |
-
self.document_id = ""
|
77 |
-
self.document_name = ""
|
78 |
-
self.dataset_id = ""
|
79 |
-
self.image_id = ""
|
80 |
-
self.similarity = None
|
81 |
-
self.vector_similarity = None
|
82 |
-
self.term_similarity = None
|
83 |
-
self.positions = None
|
84 |
-
super().__init__(rag, res_dict)
|
85 |
-
|
|
|
9 |
self.name = "New session"
|
10 |
self.messages = [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
|
11 |
self.chat_id = None
|
12 |
+
self.agent_id = None
|
13 |
+
for key,value in res_dict.items():
|
14 |
+
if key =="chat_id" and value is not None:
|
15 |
+
self.__session_type = "chat"
|
16 |
+
if key == "agent_id" and value is not None:
|
17 |
+
self.__session_type = "agent"
|
18 |
super().__init__(rag, res_dict)
|
19 |
|
20 |
+
def ask(self, question):
|
21 |
+
if self.__session_type == "agent":
|
22 |
+
res=self._ask_agent(question)
|
23 |
+
elif self.__session_type == "chat":
|
24 |
+
res=self._ask_chat(question)
|
|
|
25 |
for line in res.iter_lines():
|
26 |
line = line.decode("utf-8")
|
27 |
if line.startswith("{"):
|
|
|
38 |
}
|
39 |
if "chunks" in reference:
|
40 |
chunks = reference["chunks"]
|
41 |
+
temp_dict["reference"] = chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
message = Message(self.rag, temp_dict)
|
43 |
yield message
|
44 |
|
45 |
+
|
46 |
+
def _ask_chat(self, question: str, stream: bool = False):
|
47 |
+
res = self.post(f"/chats/{self.chat_id}/completions",
|
48 |
+
{"question": question, "stream": True,"session_id":self.id}, stream=stream)
|
49 |
+
return res
|
50 |
+
def _ask_agent(self,question:str,stream:bool=False):
|
51 |
+
res = self.post(f"/agents/{self.agent_id}/completions",
|
52 |
+
{"question": question, "stream": True,"session_id":self.id}, stream=stream)
|
53 |
+
return res
|
54 |
+
|
55 |
def update(self,update_message):
|
56 |
res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}",
|
57 |
update_message)
|
|
|
66 |
self.role = "assistant"
|
67 |
self.prompt = None
|
68 |
self.id = None
|
69 |
+
super().__init__(rag, res_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sdk/python/test/t_session.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
from ragflow_sdk import RAGFlow
|
2 |
from common import HOST_ADDRESS
|
|
|
3 |
|
4 |
|
5 |
def test_create_session_with_success(get_api_key_fixture):
|
@@ -58,6 +59,7 @@ def test_delete_sessions_with_success(get_api_key_fixture):
|
|
58 |
session = assistant.create_session()
|
59 |
assistant.delete_sessions(ids=[session.id])
|
60 |
|
|
|
61 |
def test_update_session_with_name(get_api_key_fixture):
|
62 |
API_KEY = get_api_key_fixture
|
63 |
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
@@ -92,4 +94,17 @@ def test_list_sessions_with_success(get_api_key_fixture):
|
|
92 |
assistant=rag.create_chat("test_list_session", dataset_ids=[kb.id])
|
93 |
assistant.create_session("test_1")
|
94 |
assistant.create_session("test_2")
|
95 |
-
assistant.list_sessions()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ragflow_sdk import RAGFlow,Agent
|
2 |
from common import HOST_ADDRESS
|
3 |
+
import pytest
|
4 |
|
5 |
|
6 |
def test_create_session_with_success(get_api_key_fixture):
|
|
|
59 |
session = assistant.create_session()
|
60 |
assistant.delete_sessions(ids=[session.id])
|
61 |
|
62 |
+
|
63 |
def test_update_session_with_name(get_api_key_fixture):
|
64 |
API_KEY = get_api_key_fixture
|
65 |
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
|
|
94 |
assistant=rag.create_chat("test_list_session", dataset_ids=[kb.id])
|
95 |
assistant.create_session("test_1")
|
96 |
assistant.create_session("test_2")
|
97 |
+
assistant.list_sessions()
|
98 |
+
|
99 |
+
@pytest.mark.skip(reason="")
|
100 |
+
def test_create_agent_session_with_success(get_api_key_fixture):
|
101 |
+
API_KEY = "ragflow-BkOGNhYjIyN2JiODExZWY5MzVhMDI0Mm"
|
102 |
+
rag = RAGFlow(API_KEY,HOST_ADDRESS)
|
103 |
+
Agent.create_session("2e45b5209c1011efa3e90242ac120006", rag)
|
104 |
+
|
105 |
+
@pytest.mark.skip(reason="")
|
106 |
+
def test_create_agent_conversation_with_success(get_api_key_fixture):
|
107 |
+
API_KEY = "ragflow-BkOGNhYjIyN2JiODExZWY5MzVhMDI0Mm"
|
108 |
+
rag = RAGFlow(API_KEY,HOST_ADDRESS)
|
109 |
+
session = Agent.create_session("2e45b5209c1011efa3e90242ac120006", rag)
|
110 |
+
session.ask("What is this job")
|