liuhua
liuhua
Kevin Hu
commited on
Commit
·
3d9274d
1
Parent(s):
ab87187
Refactor Chunk API (#2855)
Browse files### What problem does this PR solve?
Refactor Chunk API
#2846
### Type of change
- [x] Refactoring
---------
Co-authored-by: liuhua <[email protected]>
Co-authored-by: Kevin Hu <[email protected]>
- api/apps/sdk/doc.py +95 -76
- api/apps/sdk/session.py +28 -17
- api/db/services/document_service.py +1 -2
- api/http_api.md +372 -198
- api/python_api_reference.md +187 -198
- sdk/python/ragflow/modules/chunk.py +5 -26
- sdk/python/ragflow/modules/dataset.py +11 -0
- sdk/python/ragflow/modules/document.py +24 -153
- sdk/python/ragflow/modules/session.py +3 -2
- sdk/python/ragflow/ragflow.py +18 -93
- sdk/python/test/t_document.py +17 -27
api/apps/sdk/doc.py
CHANGED
@@ -119,13 +119,11 @@ def update_doc(tenant_id, dataset_id, document_id):
|
|
119 |
if informs:
|
120 |
e, file = FileService.get_by_id(informs[0].file_id)
|
121 |
FileService.update_by_id(file.id, {"name": req["name"]})
|
|
|
|
|
122 |
if "parser_method" in req:
|
123 |
if doc.parser_id.lower() == req["parser_method"].lower():
|
124 |
-
|
125 |
-
if req["parser_config"] == doc.parser_config:
|
126 |
-
return get_result(retcode=RetCode.SUCCESS)
|
127 |
-
else:
|
128 |
-
return get_result(retcode=RetCode.SUCCESS)
|
129 |
|
130 |
if doc.type == FileType.VISUAL or re.search(
|
131 |
r"\.(ppt|pptx|pages)$", doc.name):
|
@@ -146,8 +144,6 @@ def update_doc(tenant_id, dataset_id, document_id):
|
|
146 |
return get_error_data_result(retmsg="Tenant not found!")
|
147 |
ELASTICSEARCH.deleteByQuery(
|
148 |
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
|
149 |
-
if "parser_config" in req:
|
150 |
-
DocumentService.update_parser_config(doc.id, req["parser_config"])
|
151 |
|
152 |
return get_result()
|
153 |
|
@@ -258,6 +254,8 @@ def parse(tenant_id,dataset_id):
|
|
258 |
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
|
259 |
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
|
260 |
req = request.json
|
|
|
|
|
261 |
for id in req["document_ids"]:
|
262 |
if not DocumentService.query(id=id,kb_id=dataset_id):
|
263 |
return get_error_data_result(retmsg=f"You don't own the document {id}.")
|
@@ -283,9 +281,14 @@ def stop_parsing(tenant_id,dataset_id):
|
|
283 |
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
|
284 |
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
|
285 |
req = request.json
|
|
|
|
|
286 |
for id in req["document_ids"]:
|
287 |
-
|
|
|
288 |
return get_error_data_result(retmsg=f"You don't own the document {id}.")
|
|
|
|
|
289 |
info = {"run": "2", "progress": 0}
|
290 |
DocumentService.update_by_id(id, info)
|
291 |
# if str(req["run"]) == TaskStatus.CANCEL.value:
|
@@ -297,7 +300,7 @@ def stop_parsing(tenant_id,dataset_id):
|
|
297 |
|
298 |
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['GET'])
|
299 |
@token_required
|
300 |
-
def
|
301 |
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
|
302 |
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
|
303 |
doc=DocumentService.query(id=document_id, kb_id=dataset_id)
|
@@ -309,57 +312,58 @@ def list_chunk(tenant_id,dataset_id,document_id):
|
|
309 |
page = int(req.get("offset", 1))
|
310 |
size = int(req.get("limit", 30))
|
311 |
question = req.get("keywords", "")
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
}
|
316 |
-
if "
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
"doc_id": "document_id",
|
349 |
-
"important_kwd": "important_keywords",
|
350 |
-
"img_id": "image_id",
|
351 |
-
}
|
352 |
-
renamed_chunk = {}
|
353 |
-
for key, value in chunk.items():
|
354 |
-
new_key = key_mapping.get(key, key)
|
355 |
-
renamed_chunk[new_key] = value
|
356 |
-
res["chunks"].append(renamed_chunk)
|
357 |
-
return get_result(data=res)
|
358 |
-
except Exception as e:
|
359 |
-
if str(e).find("not_found") > 0:
|
360 |
-
return get_result(retmsg=f'No chunk found!',
|
361 |
-
retcode=RetCode.DATA_ERROR)
|
362 |
-
return server_error_response(e)
|
363 |
|
364 |
|
365 |
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['POST'])
|
@@ -374,6 +378,9 @@ def create(tenant_id,dataset_id,document_id):
|
|
374 |
req = request.json
|
375 |
if not req.get("content"):
|
376 |
return get_error_data_result(retmsg="`content` is required")
|
|
|
|
|
|
|
377 |
md5 = hashlib.md5()
|
378 |
md5.update((req["content"] + document_id).encode("utf-8"))
|
379 |
|
@@ -381,8 +388,8 @@ def create(tenant_id,dataset_id,document_id):
|
|
381 |
d = {"id": chunk_id, "content_ltks": rag_tokenizer.tokenize(req["content"]),
|
382 |
"content_with_weight": req["content"]}
|
383 |
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
384 |
-
d["important_kwd"] = req.get("
|
385 |
-
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("
|
386 |
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
387 |
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
388 |
d["kb_id"] = [doc.kb_id]
|
@@ -432,12 +439,12 @@ def rm_chunk(tenant_id,dataset_id,document_id):
|
|
432 |
req = request.json
|
433 |
if not req.get("chunk_ids"):
|
434 |
return get_error_data_result("`chunk_ids` is required")
|
|
|
|
|
|
|
435 |
for chunk_id in req.get("chunk_ids"):
|
436 |
-
|
437 |
-
chunk_id
|
438 |
-
tenant_id))
|
439 |
-
if not res.get("found"):
|
440 |
-
return server_error_response(f"Chunk {chunk_id} not found")
|
441 |
if not ELASTICSEARCH.deleteByQuery(
|
442 |
Q("ids", values=req["chunk_ids"]), search.index_name(tenant_id)):
|
443 |
return get_error_data_result(retmsg="Index updating failure")
|
@@ -451,24 +458,36 @@ def rm_chunk(tenant_id,dataset_id,document_id):
|
|
451 |
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk/<chunk_id>', methods=['PUT'])
|
452 |
@token_required
|
453 |
def set(tenant_id,dataset_id,document_id,chunk_id):
|
454 |
-
|
|
|
455 |
chunk_id, search.index_name(
|
456 |
tenant_id))
|
457 |
-
|
458 |
-
return get_error_data_result(f"
|
459 |
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
|
460 |
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
|
461 |
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
|
462 |
if not doc:
|
463 |
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
req = request.json
|
|
|
465 |
d = {
|
466 |
"id": chunk_id,
|
467 |
-
"content_with_weight": req.get("content",
|
468 |
-
d["content_ltks"] = rag_tokenizer.tokenize(
|
469 |
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
470 |
-
|
471 |
-
|
|
|
|
|
|
|
472 |
if "available" in req:
|
473 |
d["available_int"] = req["available"]
|
474 |
embd_id = DocumentService.get_embd_id(document_id)
|
@@ -478,7 +497,7 @@ def set(tenant_id,dataset_id,document_id,chunk_id):
|
|
478 |
arr = [
|
479 |
t for t in re.split(
|
480 |
r"[\n\t]",
|
481 |
-
|
482 |
if len(arr) != 2:
|
483 |
return get_error_data_result(
|
484 |
retmsg="Q&A must be separated by TAB/ENTER key.")
|
@@ -486,7 +505,7 @@ def set(tenant_id,dataset_id,document_id,chunk_id):
|
|
486 |
d = beAdoc(d, arr[0], arr[1], not any(
|
487 |
[rag_tokenizer.is_chinese(t) for t in q + a]))
|
488 |
|
489 |
-
v, c = embd_mdl.encode([doc.name,
|
490 |
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
491 |
d["q_%d_vec" % len(v)] = v.tolist()
|
492 |
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
|
@@ -505,7 +524,7 @@ def retrieval_test(tenant_id):
|
|
505 |
for id in kb_id:
|
506 |
if not KnowledgebaseService.query(id=id,tenant_id=tenant_id):
|
507 |
return get_error_data_result(f"You don't own the dataset {id}.")
|
508 |
-
if "question" not in
|
509 |
return get_error_data_result("`question` is required.")
|
510 |
page = int(req.get("offset", 1))
|
511 |
size = int(req.get("limit", 30))
|
|
|
119 |
if informs:
|
120 |
e, file = FileService.get_by_id(informs[0].file_id)
|
121 |
FileService.update_by_id(file.id, {"name": req["name"]})
|
122 |
+
if "parser_config" in req:
|
123 |
+
DocumentService.update_parser_config(doc.id, req["parser_config"])
|
124 |
if "parser_method" in req:
|
125 |
if doc.parser_id.lower() == req["parser_method"].lower():
|
126 |
+
return get_result()
|
|
|
|
|
|
|
|
|
127 |
|
128 |
if doc.type == FileType.VISUAL or re.search(
|
129 |
r"\.(ppt|pptx|pages)$", doc.name):
|
|
|
144 |
return get_error_data_result(retmsg="Tenant not found!")
|
145 |
ELASTICSEARCH.deleteByQuery(
|
146 |
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
|
|
|
|
|
147 |
|
148 |
return get_result()
|
149 |
|
|
|
254 |
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
|
255 |
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
|
256 |
req = request.json
|
257 |
+
if not req.get("document_ids"):
|
258 |
+
return get_error_data_result("`document_ids` is required")
|
259 |
for id in req["document_ids"]:
|
260 |
if not DocumentService.query(id=id,kb_id=dataset_id):
|
261 |
return get_error_data_result(retmsg=f"You don't own the document {id}.")
|
|
|
281 |
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
|
282 |
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
|
283 |
req = request.json
|
284 |
+
if not req.get("document_ids"):
|
285 |
+
return get_error_data_result("`document_ids` is required")
|
286 |
for id in req["document_ids"]:
|
287 |
+
doc = DocumentService.query(id=id, kb_id=dataset_id)
|
288 |
+
if not doc:
|
289 |
return get_error_data_result(retmsg=f"You don't own the document {id}.")
|
290 |
+
if doc[0].progress == 100.0 or doc[0].progress == 0.0:
|
291 |
+
return get_error_data_result("Can't stop parsing document with progress at 0 or 100")
|
292 |
info = {"run": "2", "progress": 0}
|
293 |
DocumentService.update_by_id(id, info)
|
294 |
# if str(req["run"]) == TaskStatus.CANCEL.value:
|
|
|
300 |
|
301 |
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['GET'])
|
302 |
@token_required
|
303 |
+
def list_chunks(tenant_id,dataset_id,document_id):
|
304 |
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
|
305 |
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
|
306 |
doc=DocumentService.query(id=document_id, kb_id=dataset_id)
|
|
|
312 |
page = int(req.get("offset", 1))
|
313 |
size = int(req.get("limit", 30))
|
314 |
question = req.get("keywords", "")
|
315 |
+
query = {
|
316 |
+
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
|
317 |
+
}
|
318 |
+
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
|
319 |
+
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
320 |
+
origin_chunks = []
|
321 |
+
sign = 0
|
322 |
+
for id in sres.ids:
|
323 |
+
d = {
|
324 |
+
"chunk_id": id,
|
325 |
+
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
|
326 |
+
id].get(
|
327 |
+
"content_with_weight", ""),
|
328 |
+
"doc_id": sres.field[id]["doc_id"],
|
329 |
+
"docnm_kwd": sres.field[id]["docnm_kwd"],
|
330 |
+
"important_kwd": sres.field[id].get("important_kwd", []),
|
331 |
+
"img_id": sres.field[id].get("img_id", ""),
|
332 |
+
"available_int": sres.field[id].get("available_int", 1),
|
333 |
+
"positions": sres.field[id].get("position_int", "").split("\t")
|
334 |
}
|
335 |
+
if len(d["positions"]) % 5 == 0:
|
336 |
+
poss = []
|
337 |
+
for i in range(0, len(d["positions"]), 5):
|
338 |
+
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
|
339 |
+
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
|
340 |
+
d["positions"] = poss
|
341 |
+
|
342 |
+
origin_chunks.append(d)
|
343 |
+
if req.get("id"):
|
344 |
+
if req.get("id") == id:
|
345 |
+
origin_chunks.clear()
|
346 |
+
origin_chunks.append(d)
|
347 |
+
sign = 1
|
348 |
+
break
|
349 |
+
if req.get("id"):
|
350 |
+
if sign == 0:
|
351 |
+
return get_error_data_result(f"Can't find this chunk {req.get('id')}")
|
352 |
+
for chunk in origin_chunks:
|
353 |
+
key_mapping = {
|
354 |
+
"chunk_id": "id",
|
355 |
+
"content_with_weight": "content",
|
356 |
+
"doc_id": "document_id",
|
357 |
+
"important_kwd": "important_keywords",
|
358 |
+
"img_id": "image_id",
|
359 |
+
}
|
360 |
+
renamed_chunk = {}
|
361 |
+
for key, value in chunk.items():
|
362 |
+
new_key = key_mapping.get(key, key)
|
363 |
+
renamed_chunk[new_key] = value
|
364 |
+
res["chunks"].append(renamed_chunk)
|
365 |
+
return get_result(data=res)
|
366 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
|
369 |
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['POST'])
|
|
|
378 |
req = request.json
|
379 |
if not req.get("content"):
|
380 |
return get_error_data_result(retmsg="`content` is required")
|
381 |
+
if "important_keywords" in req:
|
382 |
+
if type(req["important_keywords"]) != list:
|
383 |
+
return get_error_data_result("`important_keywords` is required to be a list")
|
384 |
md5 = hashlib.md5()
|
385 |
md5.update((req["content"] + document_id).encode("utf-8"))
|
386 |
|
|
|
388 |
d = {"id": chunk_id, "content_ltks": rag_tokenizer.tokenize(req["content"]),
|
389 |
"content_with_weight": req["content"]}
|
390 |
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
391 |
+
d["important_kwd"] = req.get("important_keywords", [])
|
392 |
+
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_keywords", [])))
|
393 |
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
394 |
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
395 |
d["kb_id"] = [doc.kb_id]
|
|
|
439 |
req = request.json
|
440 |
if not req.get("chunk_ids"):
|
441 |
return get_error_data_result("`chunk_ids` is required")
|
442 |
+
query = {
|
443 |
+
"doc_ids": [doc.id], "page": 1, "size": 1024, "question": "", "sort": True}
|
444 |
+
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
|
445 |
for chunk_id in req.get("chunk_ids"):
|
446 |
+
if chunk_id not in sres.ids:
|
447 |
+
return get_error_data_result(f"Chunk {chunk_id} not found")
|
|
|
|
|
|
|
448 |
if not ELASTICSEARCH.deleteByQuery(
|
449 |
Q("ids", values=req["chunk_ids"]), search.index_name(tenant_id)):
|
450 |
return get_error_data_result(retmsg="Index updating failure")
|
|
|
458 |
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk/<chunk_id>', methods=['PUT'])
|
459 |
@token_required
|
460 |
def set(tenant_id,dataset_id,document_id,chunk_id):
|
461 |
+
try:
|
462 |
+
res = ELASTICSEARCH.get(
|
463 |
chunk_id, search.index_name(
|
464 |
tenant_id))
|
465 |
+
except Exception as e:
|
466 |
+
return get_error_data_result(f"Can't find this chunk {chunk_id}")
|
467 |
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
|
468 |
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
|
469 |
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
|
470 |
if not doc:
|
471 |
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
|
472 |
+
doc = doc[0]
|
473 |
+
query = {
|
474 |
+
"doc_ids": [document_id], "page": 1, "size": 1024, "question": "", "sort": True
|
475 |
+
}
|
476 |
+
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
|
477 |
+
if chunk_id not in sres.ids:
|
478 |
+
return get_error_data_result(f"You don't own the chunk {chunk_id}")
|
479 |
req = request.json
|
480 |
+
content=res["_source"].get("content_with_weight")
|
481 |
d = {
|
482 |
"id": chunk_id,
|
483 |
+
"content_with_weight": req.get("content",content)}
|
484 |
+
d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
|
485 |
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
486 |
+
if "important_keywords" in req:
|
487 |
+
if type(req["important_keywords"]) != list:
|
488 |
+
return get_error_data_result("`important_keywords` is required to be a list")
|
489 |
+
d["important_kwd"] = req.get("important_keywords")
|
490 |
+
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
|
491 |
if "available" in req:
|
492 |
d["available_int"] = req["available"]
|
493 |
embd_id = DocumentService.get_embd_id(document_id)
|
|
|
497 |
arr = [
|
498 |
t for t in re.split(
|
499 |
r"[\n\t]",
|
500 |
+
d["content_with_weight"]) if len(t) > 1]
|
501 |
if len(arr) != 2:
|
502 |
return get_error_data_result(
|
503 |
retmsg="Q&A must be separated by TAB/ENTER key.")
|
|
|
505 |
d = beAdoc(d, arr[0], arr[1], not any(
|
506 |
[rag_tokenizer.is_chinese(t) for t in q + a]))
|
507 |
|
508 |
+
v, c = embd_mdl.encode([doc.name, d["content_with_weight"]])
|
509 |
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
510 |
d["q_%d_vec" % len(v)] = v.tolist()
|
511 |
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
|
|
|
524 |
for id in kb_id:
|
525 |
if not KnowledgebaseService.query(id=id,tenant_id=tenant_id):
|
526 |
return get_error_data_result(f"You don't own the dataset {id}.")
|
527 |
+
if "question" not in req:
|
528 |
return get_error_data_result("`question` is required.")
|
529 |
page = int(req.get("offset", 1))
|
530 |
size = int(req.get("limit", 30))
|
api/apps/sdk/session.py
CHANGED
@@ -24,10 +24,9 @@ from api.utils import get_uuid
|
|
24 |
from api.utils.api_utils import get_error_data_result
|
25 |
from api.utils.api_utils import get_result, token_required
|
26 |
|
27 |
-
|
28 |
@manager.route('/chat/<chat_id>/session', methods=['POST'])
|
29 |
@token_required
|
30 |
-
def create(tenant_id,
|
31 |
req = request.json
|
32 |
req["dialog_id"] = chat_id
|
33 |
dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
|
@@ -51,14 +50,13 @@ def create(tenant_id, chat_id):
|
|
51 |
del conv["reference"]
|
52 |
return get_result(data=conv)
|
53 |
|
54 |
-
|
55 |
@manager.route('/chat/<chat_id>/session/<session_id>', methods=['PUT'])
|
56 |
@token_required
|
57 |
-
def update(tenant_id,
|
58 |
req = request.json
|
59 |
req["dialog_id"] = chat_id
|
60 |
conv_id = session_id
|
61 |
-
conv = ConversationService.query(id=conv_id,
|
62 |
if not conv:
|
63 |
return get_error_data_result(retmsg="Session does not exist")
|
64 |
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
@@ -74,16 +72,30 @@ def update(tenant_id, chat_id, session_id):
|
|
74 |
return get_result()
|
75 |
|
76 |
|
77 |
-
@manager.route('/chat/<chat_id>/
|
78 |
@token_required
|
79 |
-
def completion(tenant_id,
|
80 |
req = request.json
|
81 |
# req = {"conversation_id": "9aaaca4c11d311efa461fa163e197198", "messages": [
|
82 |
# {"role": "user", "content": "上海有吗?"}
|
83 |
# ]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
if not req.get("question"):
|
85 |
return get_error_data_result(retmsg="Please input your question.")
|
86 |
-
conv = ConversationService.query(id=session_id,
|
87 |
if not conv:
|
88 |
return get_error_data_result(retmsg="Session does not exist")
|
89 |
conv = conv[0]
|
@@ -117,17 +129,18 @@ def completion(tenant_id, chat_id, session_id):
|
|
117 |
conv.message[-1] = {"role": "assistant", "content": ans["answer"],
|
118 |
"id": message_id, "prompt": ans.get("prompt", "")}
|
119 |
ans["id"] = message_id
|
|
|
120 |
|
121 |
def stream():
|
122 |
nonlocal dia, msg, req, conv
|
123 |
try:
|
124 |
for ans in chat(dia, msg, **req):
|
125 |
fillin_conv(ans)
|
126 |
-
yield "data:" + json.dumps({"code": 0,
|
127 |
ConversationService.update_by_id(conv.id, conv.to_dict())
|
128 |
except Exception as e:
|
129 |
yield "data:" + json.dumps({"code": 500, "message": str(e),
|
130 |
-
"data": {"answer": "**ERROR**: " + str(e),
|
131 |
ensure_ascii=False) + "\n\n"
|
132 |
yield "data:" + json.dumps({"code": 0, "data": True}, ensure_ascii=False) + "\n\n"
|
133 |
|
@@ -148,15 +161,14 @@ def completion(tenant_id, chat_id, session_id):
|
|
148 |
break
|
149 |
return get_result(data=answer)
|
150 |
|
151 |
-
|
152 |
@manager.route('/chat/<chat_id>/session', methods=['GET'])
|
153 |
@token_required
|
154 |
-
def list(chat_id,
|
155 |
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
|
156 |
return get_error_data_result(retmsg=f"You don't own the assistant {chat_id}.")
|
157 |
id = request.args.get("id")
|
158 |
name = request.args.get("name")
|
159 |
-
session = ConversationService.query(id=id,
|
160 |
if not session:
|
161 |
return get_error_data_result(retmsg="The session doesn't exist")
|
162 |
page_number = int(request.args.get("page", 1))
|
@@ -166,7 +178,7 @@ def list(chat_id, tenant_id):
|
|
166 |
desc = False
|
167 |
else:
|
168 |
desc = True
|
169 |
-
convs = ConversationService.get_list(chat_id,
|
170 |
if not convs:
|
171 |
return get_result(data=[])
|
172 |
for conv in convs:
|
@@ -201,17 +213,16 @@ def list(chat_id, tenant_id):
|
|
201 |
del conv["reference"]
|
202 |
return get_result(data=convs)
|
203 |
|
204 |
-
|
205 |
@manager.route('/chat/<chat_id>/session', methods=["DELETE"])
|
206 |
@token_required
|
207 |
-
def delete(tenant_id,
|
208 |
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
209 |
return get_error_data_result(retmsg="You don't own the chat")
|
210 |
ids = request.json.get("ids")
|
211 |
if not ids:
|
212 |
return get_error_data_result(retmsg="`ids` is required in deleting operation")
|
213 |
for id in ids:
|
214 |
-
conv = ConversationService.query(id=id,
|
215 |
if not conv:
|
216 |
return get_error_data_result(retmsg="The chat doesn't own the session")
|
217 |
ConversationService.delete_by_id(id)
|
|
|
24 |
from api.utils.api_utils import get_error_data_result
|
25 |
from api.utils.api_utils import get_result, token_required
|
26 |
|
|
|
27 |
@manager.route('/chat/<chat_id>/session', methods=['POST'])
|
28 |
@token_required
|
29 |
+
def create(tenant_id,chat_id):
|
30 |
req = request.json
|
31 |
req["dialog_id"] = chat_id
|
32 |
dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
|
|
|
50 |
del conv["reference"]
|
51 |
return get_result(data=conv)
|
52 |
|
|
|
53 |
@manager.route('/chat/<chat_id>/session/<session_id>', methods=['PUT'])
|
54 |
@token_required
|
55 |
+
def update(tenant_id,chat_id,session_id):
|
56 |
req = request.json
|
57 |
req["dialog_id"] = chat_id
|
58 |
conv_id = session_id
|
59 |
+
conv = ConversationService.query(id=conv_id,dialog_id=chat_id)
|
60 |
if not conv:
|
61 |
return get_error_data_result(retmsg="Session does not exist")
|
62 |
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
|
|
72 |
return get_result()
|
73 |
|
74 |
|
75 |
+
@manager.route('/chat/<chat_id>/completion', methods=['POST'])
|
76 |
@token_required
|
77 |
+
def completion(tenant_id,chat_id):
|
78 |
req = request.json
|
79 |
# req = {"conversation_id": "9aaaca4c11d311efa461fa163e197198", "messages": [
|
80 |
# {"role": "user", "content": "上海有吗?"}
|
81 |
# ]}
|
82 |
+
if not req.get("session_id"):
|
83 |
+
conv = {
|
84 |
+
"id": get_uuid(),
|
85 |
+
"dialog_id": chat_id,
|
86 |
+
"name": req.get("name", "New session"),
|
87 |
+
"message": [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
|
88 |
+
}
|
89 |
+
if not conv.get("name"):
|
90 |
+
return get_error_data_result(retmsg="Name can not be empty.")
|
91 |
+
ConversationService.save(**conv)
|
92 |
+
e, conv = ConversationService.get_by_id(conv["id"])
|
93 |
+
session_id=conv.id
|
94 |
+
else:
|
95 |
+
session_id = req.get("session_id")
|
96 |
if not req.get("question"):
|
97 |
return get_error_data_result(retmsg="Please input your question.")
|
98 |
+
conv = ConversationService.query(id=session_id,dialog_id=chat_id)
|
99 |
if not conv:
|
100 |
return get_error_data_result(retmsg="Session does not exist")
|
101 |
conv = conv[0]
|
|
|
129 |
conv.message[-1] = {"role": "assistant", "content": ans["answer"],
|
130 |
"id": message_id, "prompt": ans.get("prompt", "")}
|
131 |
ans["id"] = message_id
|
132 |
+
ans["session_id"]=session_id
|
133 |
|
134 |
def stream():
|
135 |
nonlocal dia, msg, req, conv
|
136 |
try:
|
137 |
for ans in chat(dia, msg, **req):
|
138 |
fillin_conv(ans)
|
139 |
+
yield "data:" + json.dumps({"code": 0, "data": ans}, ensure_ascii=False) + "\n\n"
|
140 |
ConversationService.update_by_id(conv.id, conv.to_dict())
|
141 |
except Exception as e:
|
142 |
yield "data:" + json.dumps({"code": 500, "message": str(e),
|
143 |
+
"data": {"answer": "**ERROR**: " + str(e),"reference": []}},
|
144 |
ensure_ascii=False) + "\n\n"
|
145 |
yield "data:" + json.dumps({"code": 0, "data": True}, ensure_ascii=False) + "\n\n"
|
146 |
|
|
|
161 |
break
|
162 |
return get_result(data=answer)
|
163 |
|
|
|
164 |
@manager.route('/chat/<chat_id>/session', methods=['GET'])
|
165 |
@token_required
|
166 |
+
def list(chat_id,tenant_id):
|
167 |
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
|
168 |
return get_error_data_result(retmsg=f"You don't own the assistant {chat_id}.")
|
169 |
id = request.args.get("id")
|
170 |
name = request.args.get("name")
|
171 |
+
session = ConversationService.query(id=id,name=name,dialog_id=chat_id)
|
172 |
if not session:
|
173 |
return get_error_data_result(retmsg="The session doesn't exist")
|
174 |
page_number = int(request.args.get("page", 1))
|
|
|
178 |
desc = False
|
179 |
else:
|
180 |
desc = True
|
181 |
+
convs = ConversationService.get_list(chat_id,page_number,items_per_page,orderby,desc,id,name)
|
182 |
if not convs:
|
183 |
return get_result(data=[])
|
184 |
for conv in convs:
|
|
|
213 |
del conv["reference"]
|
214 |
return get_result(data=convs)
|
215 |
|
|
|
216 |
@manager.route('/chat/<chat_id>/session', methods=["DELETE"])
|
217 |
@token_required
|
218 |
+
def delete(tenant_id,chat_id):
|
219 |
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
220 |
return get_error_data_result(retmsg="You don't own the chat")
|
221 |
ids = request.json.get("ids")
|
222 |
if not ids:
|
223 |
return get_error_data_result(retmsg="`ids` is required in deleting operation")
|
224 |
for id in ids:
|
225 |
+
conv = ConversationService.query(id=id,dialog_id=chat_id)
|
226 |
if not conv:
|
227 |
return get_error_data_result(retmsg="The chat doesn't own the session")
|
228 |
ConversationService.delete_by_id(id)
|
api/db/services/document_service.py
CHANGED
@@ -61,14 +61,13 @@ class DocumentService(CommonService):
|
|
61 |
docs = docs.where(
|
62 |
fn.LOWER(cls.model.name).contains(keywords.lower())
|
63 |
)
|
64 |
-
count = docs.count()
|
65 |
if desc:
|
66 |
docs = docs.order_by(cls.model.getter_by(orderby).desc())
|
67 |
else:
|
68 |
docs = docs.order_by(cls.model.getter_by(orderby).asc())
|
69 |
|
70 |
docs = docs.paginate(page_number, items_per_page)
|
71 |
-
|
72 |
return list(docs.dicts()), count
|
73 |
|
74 |
|
|
|
61 |
docs = docs.where(
|
62 |
fn.LOWER(cls.model.name).contains(keywords.lower())
|
63 |
)
|
|
|
64 |
if desc:
|
65 |
docs = docs.order_by(cls.model.getter_by(orderby).desc())
|
66 |
else:
|
67 |
docs = docs.order_by(cls.model.getter_by(orderby).asc())
|
68 |
|
69 |
docs = docs.paginate(page_number, items_per_page)
|
70 |
+
count = docs.count()
|
71 |
return list(docs.dicts()), count
|
72 |
|
73 |
|
api/http_api.md
CHANGED
@@ -432,18 +432,71 @@ The error response includes a JSON object like the following:
|
|
432 |
}
|
433 |
```
|
434 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
## Download a file from a dataset
|
436 |
|
437 |
**GET** `/api/v1/dataset/{dataset_id}/document/{document_id}`
|
438 |
|
439 |
-
Downloads
|
440 |
|
441 |
### Request
|
442 |
|
443 |
- Method: GET
|
444 |
-
- URL:
|
445 |
- Headers:
|
446 |
-
- `content-Type: application/json`
|
447 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
448 |
- Output:
|
449 |
- '{FILE_NAME}'
|
@@ -451,10 +504,9 @@ Downloads files from a dataset.
|
|
451 |
|
452 |
```bash
|
453 |
curl --request GET \
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
--output '{FILE_NAME}'
|
458 |
```
|
459 |
|
460 |
#### Request parameters
|
@@ -466,7 +518,7 @@ curl --request GET \
|
|
466 |
|
467 |
### Response
|
468 |
|
469 |
-
The successful response includes a
|
470 |
|
471 |
```text
|
472 |
test_2.
|
@@ -596,92 +648,39 @@ Update a file in a dataset
|
|
596 |
- Headers:
|
597 |
- `content-Type: application/json`
|
598 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
599 |
-
|
|
|
|
|
|
|
600 |
#### Request example
|
601 |
|
602 |
```bash
|
603 |
curl --request PUT \
|
604 |
-
--url http://{address}/api/v1/dataset/{dataset_id}/
|
605 |
--header 'Authorization: Bearer {YOUR_ACCESS TOKEN}' \
|
606 |
--header 'Content-Type: application/json' \
|
607 |
--data '{
|
608 |
"name": "manual.txt",
|
609 |
-
"thumbnail": null,
|
610 |
-
"knowledgebase_id": "779333c0758611ef910f0242ac120004",
|
611 |
"parser_method": "manual",
|
612 |
-
"parser_config": {"chunk_token_count": 128, "delimiter": "\n!?。;!?", "layout_recognize": true, "task_page_size": 12}
|
613 |
-
"source_type": "local", "type": "doc",
|
614 |
-
"created_by": "134408906b6811efbcd20242ac120005",
|
615 |
-
"size": 0, "token_count": 0, "chunk_count": 0,
|
616 |
-
"progress": 0.0,
|
617 |
-
"progress_msg": "",
|
618 |
-
"process_begin_at": null,
|
619 |
-
"process_duration": 0.0
|
620 |
}'
|
621 |
|
622 |
```
|
623 |
|
624 |
#### Request parameters
|
625 |
|
626 |
-
- `"thumbnail"`: (*Body parameter*)
|
627 |
-
Thumbnail image of the document.
|
628 |
-
- `""`
|
629 |
-
|
630 |
-
- `"knowledgebase_id"`: (*Body parameter*)
|
631 |
-
Knowledge base ID related to the document.
|
632 |
-
- `""`
|
633 |
-
|
634 |
- `"parser_method"`: (*Body parameter*)
|
635 |
Method used to parse the document.
|
636 |
-
|
637 |
|
638 |
- `"parser_config"`: (*Body parameter*)
|
639 |
Configuration object for the parser.
|
640 |
- If the value is `None`, a dictionary with default values will be generated.
|
641 |
|
642 |
-
- `"source_type"`: (*Body parameter*)
|
643 |
-
Source type of the document.
|
644 |
-
- `""`
|
645 |
-
|
646 |
-
- `"type"`: (*Body parameter*)
|
647 |
-
Type or category of the document.
|
648 |
-
- `""`
|
649 |
-
|
650 |
-
- `"created_by"`: (*Body parameter*)
|
651 |
-
Creator of the document.
|
652 |
-
- `""`
|
653 |
-
|
654 |
- `"name"`: (*Body parameter*)
|
655 |
Name or title of the document.
|
656 |
-
- `""`
|
657 |
-
|
658 |
-
- `"size"`: (*Body parameter*)
|
659 |
-
Size of the document in bytes or some other unit.
|
660 |
-
- `0`
|
661 |
-
|
662 |
-
- `"token_count"`: (*Body parameter*)
|
663 |
-
Number of tokens in the document.
|
664 |
-
- `0`
|
665 |
-
|
666 |
-
- `"chunk_count"`: (*Body parameter*)
|
667 |
-
Number of chunks the document is split into.
|
668 |
-
- `0`
|
669 |
|
670 |
-
- `"progress"`: (*Body parameter*)
|
671 |
-
Current processing progress as a percentage.
|
672 |
-
- `0.0`
|
673 |
|
674 |
-
- `"progress_msg"`: (*Body parameter*)
|
675 |
-
Message indicating current progress status.
|
676 |
-
- `""`
|
677 |
-
|
678 |
-
- `"process_begin_at"`: (*Body parameter*)
|
679 |
-
Start time of the document processing.
|
680 |
-
- `None`
|
681 |
-
|
682 |
-
- `"process_duration"`: (*Body parameter*)
|
683 |
-
Duration of the processing in seconds or minutes.
|
684 |
-
- `0.0`
|
685 |
|
686 |
|
687 |
### Response
|
@@ -712,34 +711,34 @@ Parse files into chunks in a dataset
|
|
712 |
### Request
|
713 |
|
714 |
- Method: POST
|
715 |
-
- URL:
|
716 |
- Headers:
|
717 |
- `content-Type: application/json`
|
718 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
|
|
|
|
719 |
|
720 |
#### Request example
|
721 |
|
722 |
-
```
|
723 |
curl --request POST \
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
"documents": ["f6b170ac758811efa0660242ac120004", "97ad64b6759811ef9fc30242ac120004"]
|
729 |
-
}'
|
730 |
```
|
731 |
|
732 |
#### Request parameters
|
733 |
|
734 |
- `"dataset_id"`: (*Path parameter*)
|
735 |
-
- `"
|
736 |
-
|
737 |
|
738 |
### Response
|
739 |
|
740 |
The successful response includes a JSON object like the following:
|
741 |
|
742 |
-
```
|
743 |
{
|
744 |
"code": 0
|
745 |
}
|
@@ -747,10 +746,10 @@ The successful response includes a JSON object like the following:
|
|
747 |
|
748 |
The error response includes a JSON object like the following:
|
749 |
|
750 |
-
```
|
751 |
{
|
752 |
-
"code":
|
753 |
-
"message": "
|
754 |
}
|
755 |
```
|
756 |
|
@@ -762,35 +761,35 @@ Stop file parsing
|
|
762 |
|
763 |
### Request
|
764 |
|
765 |
-
- Method:
|
766 |
-
- URL:
|
767 |
- Headers:
|
768 |
- `content-Type: application/json`
|
769 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
770 |
-
|
|
|
771 |
#### Request example
|
772 |
|
773 |
-
```
|
774 |
curl --request DELETE \
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
"documents": ["f6b170ac758811efa0660242ac120004", "97ad64b6759811ef9fc30242ac120004"]
|
780 |
-
}'
|
781 |
```
|
782 |
|
783 |
#### Request parameters
|
784 |
|
785 |
- `"dataset_id"`: (*Path parameter*)
|
786 |
-
- `"
|
787 |
-
|
|
|
788 |
|
789 |
### Response
|
790 |
|
791 |
The successful response includes a JSON object like the following:
|
792 |
|
793 |
-
```
|
794 |
{
|
795 |
"code": 0
|
796 |
}
|
@@ -798,104 +797,98 @@ The successful response includes a JSON object like the following:
|
|
798 |
|
799 |
The error response includes a JSON object like the following:
|
800 |
|
801 |
-
```
|
802 |
{
|
803 |
-
"code":
|
804 |
-
"message": "
|
805 |
}
|
806 |
```
|
807 |
|
808 |
## Get document chunk list
|
809 |
|
810 |
-
**GET** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
|
811 |
|
812 |
Get document chunk list
|
813 |
|
814 |
### Request
|
815 |
|
816 |
- Method: GET
|
817 |
-
- URL:
|
818 |
- Headers:
|
819 |
-
- `content-Type: application/json`
|
820 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
821 |
|
822 |
#### Request example
|
823 |
|
824 |
-
```
|
825 |
curl --request GET \
|
826 |
-
|
827 |
-
|
828 |
-
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
829 |
```
|
830 |
|
831 |
#### Request parameters
|
832 |
|
833 |
- `"dataset_id"`: (*Path parameter*)
|
834 |
- `"document_id"`: (*Path parameter*)
|
835 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
836 |
### Response
|
837 |
|
838 |
The successful response includes a JSON object like the following:
|
839 |
|
840 |
-
```
|
841 |
{
|
842 |
-
"code": 0
|
843 |
"data": {
|
844 |
-
"chunks": [
|
845 |
-
{
|
846 |
-
"available_int": 1,
|
847 |
-
"content": "<em>advantag</em>of ragflow increas accuraci and relev:by incorpor retriev inform , ragflow can gener respons that are more accur",
|
848 |
-
"document_keyword": "ragflow_test.txt",
|
849 |
-
"document_id": "77df9ef4759a11ef8bdd0242ac120004",
|
850 |
-
"id": "4ab8c77cfac1a829c8d5ed022a0808c0",
|
851 |
-
"image_id": "",
|
852 |
-
"important_keywords": [],
|
853 |
-
"positions": [
|
854 |
-
""
|
855 |
-
]
|
856 |
-
}
|
857 |
-
],
|
858 |
"doc": {
|
859 |
-
"
|
860 |
-
"create_date": "
|
861 |
-
"create_time":
|
862 |
-
"created_by": "
|
863 |
-
"id": "
|
864 |
-
"
|
865 |
-
"location": "
|
866 |
-
"name": "
|
867 |
"parser_config": {
|
868 |
-
"
|
869 |
-
|
870 |
-
|
871 |
-
|
|
|
|
|
872 |
},
|
873 |
-
"
|
874 |
-
"process_begin_at": "
|
875 |
-
"process_duation":
|
876 |
-
"progress":
|
877 |
-
"progress_msg": "\nTask has been received
|
878 |
-
"run": "
|
879 |
-
"size":
|
880 |
"source_type": "local",
|
881 |
"status": "1",
|
882 |
"thumbnail": null,
|
883 |
-
"
|
884 |
"type": "doc",
|
885 |
-
"update_date": "
|
886 |
-
"update_time":
|
887 |
},
|
888 |
-
"total":
|
889 |
-
}
|
890 |
}
|
891 |
```
|
892 |
|
893 |
The error response includes a JSON object like the following:
|
894 |
|
895 |
-
```
|
896 |
{
|
897 |
-
"code":
|
898 |
-
"message": "
|
899 |
}
|
900 |
```
|
901 |
|
@@ -908,55 +901,96 @@ Delete document chunks
|
|
908 |
### Request
|
909 |
|
910 |
- Method: DELETE
|
911 |
-
- URL:
|
912 |
- Headers:
|
913 |
- `content-Type: application/json`
|
914 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
|
|
|
|
915 |
|
916 |
#### Request example
|
917 |
|
918 |
-
```
|
919 |
curl --request DELETE \
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
927 |
|
928 |
## Update document chunk
|
929 |
|
930 |
-
**PUT** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
|
931 |
|
932 |
Update document chunk
|
933 |
|
934 |
### Request
|
935 |
|
936 |
- Method: PUT
|
937 |
-
- URL:
|
938 |
- Headers:
|
939 |
- `content-Type: application/json`
|
940 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
941 |
-
|
|
|
|
|
|
|
942 |
#### Request example
|
943 |
|
944 |
-
```
|
945 |
curl --request PUT \
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
"content": "ragflow123",
|
954 |
-
"important_keywords": [],
|
955 |
-
"document_id": "e6bbba92759511efaa900242ac120004",
|
956 |
-
"status": "1"
|
957 |
-
}'
|
958 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
959 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
960 |
## Insert document chunks
|
961 |
|
962 |
**POST** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
|
@@ -966,50 +1000,187 @@ Insert document chunks
|
|
966 |
### Request
|
967 |
|
968 |
- Method: POST
|
969 |
-
- URL:
|
970 |
- Headers:
|
971 |
- `content-Type: application/json`
|
972 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
973 |
-
|
|
|
|
|
974 |
#### Request example
|
975 |
|
976 |
-
```
|
977 |
curl --request POST \
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
}'
|
985 |
```
|
|
|
|
|
|
|
|
|
|
|
986 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
987 |
## Dataset retrieval test
|
988 |
|
989 |
-
**GET** `/api/v1/
|
990 |
|
991 |
Retrieval test of a dataset
|
992 |
|
993 |
### Request
|
994 |
|
995 |
-
- Method:
|
996 |
-
- URL:
|
997 |
- Headers:
|
998 |
- `content-Type: application/json`
|
999 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
1000 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1001 |
#### Request example
|
1002 |
|
1003 |
-
```
|
1004 |
-
curl --request
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1011 |
```
|
1012 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1013 |
## Create chat
|
1014 |
|
1015 |
**POST** `/api/v1/chat`
|
@@ -1708,26 +1879,27 @@ Error
|
|
1708 |
|
1709 |
## Chat with a chat session
|
1710 |
|
1711 |
-
**POST** `/api/v1/chat/{chat_id}/
|
1712 |
|
1713 |
Chat with a chat session
|
1714 |
|
1715 |
### Request
|
1716 |
|
1717 |
- Method: POST
|
1718 |
-
- URL: `http://{address} /api/v1/chat/{chat_id}/
|
1719 |
- Headers:
|
1720 |
- `content-Type: application/json`
|
1721 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
1722 |
- Body:
|
1723 |
- `question`: string
|
1724 |
- `stream`: bool
|
|
|
1725 |
|
1726 |
|
1727 |
#### Request example
|
1728 |
```bash
|
1729 |
curl --request POST \
|
1730 |
-
--url http://{address} /api/v1/chat/{chat_id}/
|
1731 |
--header 'Content-Type: application/json' \
|
1732 |
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
|
1733 |
--data-binary '{
|
@@ -1743,6 +1915,8 @@ curl --request POST \
|
|
1743 |
- `stream`: (*Body Parameter*)
|
1744 |
The approach of streaming text generation.
|
1745 |
`False`
|
|
|
|
|
1746 |
### Response
|
1747 |
Success
|
1748 |
```json
|
|
|
432 |
}
|
433 |
```
|
434 |
|
435 |
+
## Delete files from a dataset
|
436 |
+
|
437 |
+
**DELETE** `/api/v1/dataset/{dataset_id}/document `
|
438 |
+
|
439 |
+
Delete files from a dataset
|
440 |
+
|
441 |
+
### Request
|
442 |
+
|
443 |
+
- Method: DELETE
|
444 |
+
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document`
|
445 |
+
- Headers:
|
446 |
+
- 'Content-Type: application/json'
|
447 |
+
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
448 |
+
- Body:
|
449 |
+
- `ids`:List[str]
|
450 |
+
#### Request example
|
451 |
+
|
452 |
+
```bash
|
453 |
+
curl --request DELETE \
|
454 |
+
--url http://{address}/api/v1/dataset/{dataset_id}/document \
|
455 |
+
--header 'Content-Type: application/json' \
|
456 |
+
--header 'Authorization: {YOUR ACCESS TOKEN}' \
|
457 |
+
--data '{
|
458 |
+
"ids": ["id_1","id_2"]
|
459 |
+
}'
|
460 |
+
```
|
461 |
+
|
462 |
+
#### Request parameters
|
463 |
+
|
464 |
+
- `"ids"`: (*Body parameter*)
|
465 |
+
The ids of teh documents to be deleted
|
466 |
+
### Response
|
467 |
+
|
468 |
+
The successful response includes a JSON object like the following:
|
469 |
+
|
470 |
+
```json
|
471 |
+
{
|
472 |
+
"code": 0
|
473 |
+
}.
|
474 |
+
```
|
475 |
+
|
476 |
+
- `"error_code"`: `integer`
|
477 |
+
`0`: The operation succeeds.
|
478 |
+
|
479 |
+
|
480 |
+
The error response includes a JSON object like the following:
|
481 |
+
|
482 |
+
```json
|
483 |
+
{
|
484 |
+
"code": 102,
|
485 |
+
"message": "You do not own the dataset 7898da028a0511efbf750242ac1220005."
|
486 |
+
}
|
487 |
+
```
|
488 |
+
|
489 |
## Download a file from a dataset
|
490 |
|
491 |
**GET** `/api/v1/dataset/{dataset_id}/document/{document_id}`
|
492 |
|
493 |
+
Downloads a file from a dataset.
|
494 |
|
495 |
### Request
|
496 |
|
497 |
- Method: GET
|
498 |
+
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}`
|
499 |
- Headers:
|
|
|
500 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
501 |
- Output:
|
502 |
- '{FILE_NAME}'
|
|
|
504 |
|
505 |
```bash
|
506 |
curl --request GET \
|
507 |
+
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id} \
|
508 |
+
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
|
509 |
+
--output ./ragflow.txt
|
|
|
510 |
```
|
511 |
|
512 |
#### Request parameters
|
|
|
518 |
|
519 |
### Response
|
520 |
|
521 |
+
The successful response includes a text object like the following:
|
522 |
|
523 |
```text
|
524 |
test_2.
|
|
|
648 |
- Headers:
|
649 |
- `content-Type: application/json`
|
650 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
651 |
+
- Body:
|
652 |
+
- `name`:`string`
|
653 |
+
- `parser_method`:`string`
|
654 |
+
- `parser_config`:`dict`
|
655 |
#### Request example
|
656 |
|
657 |
```bash
|
658 |
curl --request PUT \
|
659 |
+
--url http://{address}/api/v1/dataset/{dataset_id}/info/{document_id} \
|
660 |
--header 'Authorization: Bearer {YOUR_ACCESS TOKEN}' \
|
661 |
--header 'Content-Type: application/json' \
|
662 |
--data '{
|
663 |
"name": "manual.txt",
|
|
|
|
|
664 |
"parser_method": "manual",
|
665 |
+
"parser_config": {"chunk_token_count": 128, "delimiter": "\n!?。;!?", "layout_recognize": true, "task_page_size": 12}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
666 |
}'
|
667 |
|
668 |
```
|
669 |
|
670 |
#### Request parameters
|
671 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
672 |
- `"parser_method"`: (*Body parameter*)
|
673 |
Method used to parse the document.
|
674 |
+
|
675 |
|
676 |
- `"parser_config"`: (*Body parameter*)
|
677 |
Configuration object for the parser.
|
678 |
- If the value is `None`, a dictionary with default values will be generated.
|
679 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
680 |
- `"name"`: (*Body parameter*)
|
681 |
Name or title of the document.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
682 |
|
|
|
|
|
|
|
683 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
684 |
|
685 |
|
686 |
### Response
|
|
|
711 |
### Request
|
712 |
|
713 |
- Method: POST
|
714 |
+
- URL: `http://{address}/api/v1/dataset/{dataset_id}/chunk `
|
715 |
- Headers:
|
716 |
- `content-Type: application/json`
|
717 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
718 |
+
- Body:
|
719 |
+
- `document_ids`:List[str]
|
720 |
|
721 |
#### Request example
|
722 |
|
723 |
+
```bash
|
724 |
curl --request POST \
|
725 |
+
--url http://{address}/api/v1/dataset/{dataset_id}/chunk \
|
726 |
+
--header 'Content-Type: application/json' \
|
727 |
+
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
|
728 |
+
--data '{"document_ids": ["97a5f1c2759811efaa500242ac120004","97ad64b6759811ef9fc30242ac120004"]}'
|
|
|
|
|
729 |
```
|
730 |
|
731 |
#### Request parameters
|
732 |
|
733 |
- `"dataset_id"`: (*Path parameter*)
|
734 |
+
- `"document_ids"`:(*Body parameter*)
|
735 |
+
The ids of the documents to be parsed
|
736 |
|
737 |
### Response
|
738 |
|
739 |
The successful response includes a JSON object like the following:
|
740 |
|
741 |
+
```json
|
742 |
{
|
743 |
"code": 0
|
744 |
}
|
|
|
746 |
|
747 |
The error response includes a JSON object like the following:
|
748 |
|
749 |
+
```json
|
750 |
{
|
751 |
+
"code": 102,
|
752 |
+
"message": "`document_ids` is required"
|
753 |
}
|
754 |
```
|
755 |
|
|
|
761 |
|
762 |
### Request
|
763 |
|
764 |
+
- Method: DELETE
|
765 |
+
- URL: `http://{address}/api/v1/dataset/{dataset_id}/chunk`
|
766 |
- Headers:
|
767 |
- `content-Type: application/json`
|
768 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
769 |
+
- Body:
|
770 |
+
- `document_ids`:List[str]
|
771 |
#### Request example
|
772 |
|
773 |
+
```bash
|
774 |
curl --request DELETE \
|
775 |
+
--url http://{address}/api/v1/dataset/{dataset_id}/chunk \
|
776 |
+
--header 'Content-Type: application/json' \
|
777 |
+
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
|
778 |
+
--data '{"document_ids": ["97a5f1c2759811efaa500242ac120004","97ad64b6759811ef9fc30242ac120004"]}'
|
|
|
|
|
779 |
```
|
780 |
|
781 |
#### Request parameters
|
782 |
|
783 |
- `"dataset_id"`: (*Path parameter*)
|
784 |
+
- `"document_ids"`:(*Body parameter*)
|
785 |
+
The ids of the documents to be parsed
|
786 |
+
|
787 |
|
788 |
### Response
|
789 |
|
790 |
The successful response includes a JSON object like the following:
|
791 |
|
792 |
+
```json
|
793 |
{
|
794 |
"code": 0
|
795 |
}
|
|
|
797 |
|
798 |
The error response includes a JSON object like the following:
|
799 |
|
800 |
+
```json
|
801 |
{
|
802 |
+
"code": 102,
|
803 |
+
"message": "`document_ids` is required"
|
804 |
}
|
805 |
```
|
806 |
|
807 |
## Get document chunk list
|
808 |
|
809 |
+
**GET** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk?keywords={keywords}&offset={offset}&limit={limit}&id={id}`
|
810 |
|
811 |
Get document chunk list
|
812 |
|
813 |
### Request
|
814 |
|
815 |
- Method: GET
|
816 |
+
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk?keywords={keywords}&offset={offset}&limit={limit}&id={id}`
|
817 |
- Headers:
|
|
|
818 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
819 |
|
820 |
#### Request example
|
821 |
|
822 |
+
```bash
|
823 |
curl --request GET \
|
824 |
+
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk?keywords={keywords}&offset={offset}&limit={limit}&id={id} \
|
825 |
+
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
|
|
826 |
```
|
827 |
|
828 |
#### Request parameters
|
829 |
|
830 |
- `"dataset_id"`: (*Path parameter*)
|
831 |
- `"document_id"`: (*Path parameter*)
|
832 |
+
- `"offset"`(*Filter parameter*)
|
833 |
+
The beginning number of records for paging.
|
834 |
+
- `"keywords"`(*Filter parameter*)
|
835 |
+
List chunks whose name has the given keywords
|
836 |
+
- `"limit"`(*Filter parameter*)
|
837 |
+
Records number to return
|
838 |
+
- `"id"`(*Filter parameter*)
|
839 |
+
The id of chunk to be got
|
840 |
### Response
|
841 |
|
842 |
The successful response includes a JSON object like the following:
|
843 |
|
844 |
+
```json
|
845 |
{
|
846 |
+
"code": 0,
|
847 |
"data": {
|
848 |
+
"chunks": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
849 |
"doc": {
|
850 |
+
"chunk_num": 0,
|
851 |
+
"create_date": "Sun, 29 Sep 2024 03:47:29 GMT",
|
852 |
+
"create_time": 1727581649216,
|
853 |
+
"created_by": "69736c5e723611efb51b0242ac120007",
|
854 |
+
"id": "8cb781ec7e1511ef98ac0242ac120006",
|
855 |
+
"kb_id": "c7ee74067a2c11efb21c0242ac120006",
|
856 |
+
"location": "明天的天气是晴天.txt",
|
857 |
+
"name": "明天的天气是晴天.txt",
|
858 |
"parser_config": {
|
859 |
+
"pages": [
|
860 |
+
[
|
861 |
+
1,
|
862 |
+
1000000
|
863 |
+
]
|
864 |
+
]
|
865 |
},
|
866 |
+
"parser_id": "naive",
|
867 |
+
"process_begin_at": "Tue, 15 Oct 2024 10:23:51 GMT",
|
868 |
+
"process_duation": 1435.37,
|
869 |
+
"progress": 0.0370833,
|
870 |
+
"progress_msg": "\nTask has been received.",
|
871 |
+
"run": "1",
|
872 |
+
"size": 24,
|
873 |
"source_type": "local",
|
874 |
"status": "1",
|
875 |
"thumbnail": null,
|
876 |
+
"token_num": 0,
|
877 |
"type": "doc",
|
878 |
+
"update_date": "Tue, 15 Oct 2024 10:47:46 GMT",
|
879 |
+
"update_time": 1728989266371
|
880 |
},
|
881 |
+
"total": 0
|
882 |
+
}
|
883 |
}
|
884 |
```
|
885 |
|
886 |
The error response includes a JSON object like the following:
|
887 |
|
888 |
+
```json
|
889 |
{
|
890 |
+
"code": 102,
|
891 |
+
"message": "You don't own the document 5c5999ec7be811ef9cab0242ac12000e5."
|
892 |
}
|
893 |
```
|
894 |
|
|
|
901 |
### Request
|
902 |
|
903 |
- Method: DELETE
|
904 |
+
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
|
905 |
- Headers:
|
906 |
- `content-Type: application/json`
|
907 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
908 |
+
- Body:
|
909 |
+
- `chunk_ids`:List[str]
|
910 |
|
911 |
#### Request example
|
912 |
|
913 |
+
```bash
|
914 |
curl --request DELETE \
|
915 |
+
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
|
916 |
+
--header 'Content-Type: application/json' \
|
917 |
+
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
|
918 |
+
--data '{
|
919 |
+
"chunk_ids": ["test_1", "test_2"]
|
920 |
+
}'
|
921 |
```
|
922 |
+
#### Request parameters
|
923 |
+
|
924 |
+
- `"chunk_ids"`:(*Body parameter*)
|
925 |
+
The chunks of the document to be deleted
|
926 |
+
|
927 |
+
### Response
|
928 |
+
Success
|
929 |
+
```json
|
930 |
+
{
|
931 |
+
"code": 0
|
932 |
+
}
|
933 |
+
```
|
934 |
+
Error
|
935 |
+
```json
|
936 |
+
{
|
937 |
+
"code": 102,
|
938 |
+
"message": "`chunk_ids` is required"
|
939 |
+
}
|
940 |
+
```
|
941 |
+
|
942 |
|
943 |
## Update document chunk
|
944 |
|
945 |
+
**PUT** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk/{chunk_id}`
|
946 |
|
947 |
Update document chunk
|
948 |
|
949 |
### Request
|
950 |
|
951 |
- Method: PUT
|
952 |
+
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk/{chunk_id}`
|
953 |
- Headers:
|
954 |
- `content-Type: application/json`
|
955 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
956 |
+
- Body:
|
957 |
+
- `content`:str
|
958 |
+
- `important_keywords`:str
|
959 |
+
- `available`:int
|
960 |
#### Request example
|
961 |
|
962 |
+
```bash
|
963 |
curl --request PUT \
|
964 |
+
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk/{chunk_id} \
|
965 |
+
--header 'Content-Type: application/json' \
|
966 |
+
--header 'Authorization: {YOUR_ACCESS_TOKEN}' \
|
967 |
+
--data '{
|
968 |
+
"content": "ragflow123",
|
969 |
+
"important_keywords": [],
|
970 |
+
}'
|
|
|
|
|
|
|
|
|
|
|
971 |
```
|
972 |
+
#### Request parameters
|
973 |
+
- `"content"`:(*Body parameter*)
|
974 |
+
Contains the main text or information of the chunk.
|
975 |
+
- `"important_keywords"`:(*Body parameter*)
|
976 |
+
list the key terms or phrases that are significant or central to the chunk's content.
|
977 |
+
- `"available"`:(*Body parameter*)
|
978 |
+
Indicating the availability status, 0 means unavailable and 1 means available.
|
979 |
|
980 |
+
### Response
|
981 |
+
Success
|
982 |
+
```json
|
983 |
+
{
|
984 |
+
"code": 0
|
985 |
+
}
|
986 |
+
```
|
987 |
+
Error
|
988 |
+
```json
|
989 |
+
{
|
990 |
+
"code": 102,
|
991 |
+
"message": "Can't find this chunk 29a2d9987e16ba331fb4d7d30d99b71d2"
|
992 |
+
}
|
993 |
+
```
|
994 |
## Insert document chunks
|
995 |
|
996 |
**POST** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
|
|
|
1000 |
### Request
|
1001 |
|
1002 |
- Method: POST
|
1003 |
+
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
|
1004 |
- Headers:
|
1005 |
- `content-Type: application/json`
|
1006 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
1007 |
+
- Body:
|
1008 |
+
- `content`: str
|
1009 |
+
- `important_keywords`:List[str]
|
1010 |
#### Request example
|
1011 |
|
1012 |
+
```bash
|
1013 |
curl --request POST \
|
1014 |
+
--url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
|
1015 |
+
--header 'Content-Type: application/json' \
|
1016 |
+
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
|
1017 |
+
--data '{
|
1018 |
+
"content": "ragflow content"
|
1019 |
+
}'
|
|
|
1020 |
```
|
1021 |
+
#### Request parameters
|
1022 |
+
- `content`:(*Body parameter*)
|
1023 |
+
Contains the main text or information of the chunk.
|
1024 |
+
- `important_keywords`(*Body parameter*)
|
1025 |
+
list the key terms or phrases that are significant or central to the chunk's content.
|
1026 |
|
1027 |
+
### Response
|
1028 |
+
Success
|
1029 |
+
```json
|
1030 |
+
{
|
1031 |
+
"code": 0,
|
1032 |
+
"data": {
|
1033 |
+
"chunk": {
|
1034 |
+
"content": "ragflow content",
|
1035 |
+
"create_time": "2024-10-16 08:05:04",
|
1036 |
+
"create_timestamp": 1729065904.581025,
|
1037 |
+
"dataset_id": [
|
1038 |
+
"c7ee74067a2c11efb21c0242ac120006"
|
1039 |
+
],
|
1040 |
+
"document_id": "5c5999ec7be811ef9cab0242ac120005",
|
1041 |
+
"id": "d78435d142bd5cf6704da62c778795c5",
|
1042 |
+
"important_keywords": []
|
1043 |
+
}
|
1044 |
+
}
|
1045 |
+
}
|
1046 |
+
```
|
1047 |
+
|
1048 |
+
Error
|
1049 |
+
```json
|
1050 |
+
{
|
1051 |
+
"code": 102,
|
1052 |
+
"message": "`content` is required"
|
1053 |
+
}
|
1054 |
+
```
|
1055 |
## Dataset retrieval test
|
1056 |
|
1057 |
+
**GET** `/api/v1/retrieval`
|
1058 |
|
1059 |
Retrieval test of a dataset
|
1060 |
|
1061 |
### Request
|
1062 |
|
1063 |
+
- Method: POST
|
1064 |
+
- URL: `http://{address}/api/v1/retrieval`
|
1065 |
- Headers:
|
1066 |
- `content-Type: application/json`
|
1067 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
1068 |
+
- Body:
|
1069 |
+
- `question`: str
|
1070 |
+
- `datasets`: List[str]
|
1071 |
+
- `documents`: List[str]
|
1072 |
+
- `offset`: int
|
1073 |
+
- `limit`: int
|
1074 |
+
- `similarity_threshold`: float
|
1075 |
+
- `vector_similarity_weight`: float
|
1076 |
+
- `top_k`: int
|
1077 |
+
- `rerank_id`: string
|
1078 |
+
- `keyword`: bool
|
1079 |
+
- `highlight`: bool
|
1080 |
#### Request example
|
1081 |
|
1082 |
+
```bash
|
1083 |
+
curl --request POST \
|
1084 |
+
--url http://{address}/api/v1/retrieval \
|
1085 |
+
--header 'Content-Type: application/json' \
|
1086 |
+
--header 'Authorization: {YOUR_ACCESS_TOKEN}' \
|
1087 |
+
--data '{
|
1088 |
+
"question": "What is advantage of ragflow?",
|
1089 |
+
"datasets": [
|
1090 |
+
"b2a62730759d11ef987d0242ac120004"
|
1091 |
+
],
|
1092 |
+
"documents": [
|
1093 |
+
"77df9ef4759a11ef8bdd0242ac120004"
|
1094 |
+
]
|
1095 |
+
}'
|
1096 |
```
|
1097 |
|
1098 |
+
#### Request parameter
|
1099 |
+
- `"question"`: (*Body parameter*)
|
1100 |
+
User's question, search keywords
|
1101 |
+
`""`
|
1102 |
+
- `"datasets"`: (*Body parameter*)
|
1103 |
+
The scope of datasets
|
1104 |
+
`None`
|
1105 |
+
- `"documents"`: (*Body parameter*)
|
1106 |
+
The scope of document. `None` means no limitation
|
1107 |
+
`None`
|
1108 |
+
- `"offset"`: (*Body parameter*)
|
1109 |
+
The beginning point of retrieved records
|
1110 |
+
`1`
|
1111 |
+
|
1112 |
+
- `"limit"`: (*Body parameter*)
|
1113 |
+
The maximum number of records needed to return
|
1114 |
+
`30`
|
1115 |
+
|
1116 |
+
- `"similarity_threshold"`: (*Body parameter*)
|
1117 |
+
The minimum similarity score
|
1118 |
+
`0.2`
|
1119 |
+
|
1120 |
+
- `"vector_similarity_weight"`: (*Body parameter*)
|
1121 |
+
The weight of vector cosine similarity, `1 - x` is the term similarity weight
|
1122 |
+
`0.3`
|
1123 |
+
|
1124 |
+
- `"top_k"`: (*Body parameter*)
|
1125 |
+
Number of records engaged in vector cosine computation
|
1126 |
+
`1024`
|
1127 |
+
|
1128 |
+
- `"rerank_id"`: (*Body parameter*)
|
1129 |
+
ID of the rerank model
|
1130 |
+
`None`
|
1131 |
+
|
1132 |
+
- `"keyword"`: (*Body parameter*)
|
1133 |
+
Whether keyword-based matching is enabled
|
1134 |
+
`False`
|
1135 |
+
|
1136 |
+
- `"highlight"`: (*Body parameter*)
|
1137 |
+
Whether to enable highlighting of matched terms in the results
|
1138 |
+
`False`
|
1139 |
+
### Response
|
1140 |
+
Success
|
1141 |
+
```json
|
1142 |
+
{
|
1143 |
+
"code": 0,
|
1144 |
+
"data": {
|
1145 |
+
"chunks": [
|
1146 |
+
{
|
1147 |
+
"content": "ragflow content",
|
1148 |
+
"content_ltks": "ragflow content",
|
1149 |
+
"document_id": "5c5999ec7be811ef9cab0242ac120005",
|
1150 |
+
"document_keyword": "1.txt",
|
1151 |
+
"highlight": "<em>ragflow</em> content",
|
1152 |
+
"id": "d78435d142bd5cf6704da62c778795c5",
|
1153 |
+
"img_id": "",
|
1154 |
+
"important_keywords": [
|
1155 |
+
""
|
1156 |
+
],
|
1157 |
+
"kb_id": "c7ee74067a2c11efb21c0242ac120006",
|
1158 |
+
"positions": [
|
1159 |
+
""
|
1160 |
+
],
|
1161 |
+
"similarity": 0.9669436601210759,
|
1162 |
+
"term_similarity": 1.0,
|
1163 |
+
"vector_similarity": 0.8898122004035864
|
1164 |
+
}
|
1165 |
+
],
|
1166 |
+
"doc_aggs": [
|
1167 |
+
{
|
1168 |
+
"count": 1,
|
1169 |
+
"doc_id": "5c5999ec7be811ef9cab0242ac120005",
|
1170 |
+
"doc_name": "1.txt"
|
1171 |
+
}
|
1172 |
+
],
|
1173 |
+
"total": 1
|
1174 |
+
}
|
1175 |
+
}
|
1176 |
+
```
|
1177 |
+
Error
|
1178 |
+
```json
|
1179 |
+
{
|
1180 |
+
"code": 102,
|
1181 |
+
"message": "`datasets` is required."
|
1182 |
+
}
|
1183 |
+
```
|
1184 |
## Create chat
|
1185 |
|
1186 |
**POST** `/api/v1/chat`
|
|
|
1879 |
|
1880 |
## Chat with a chat session
|
1881 |
|
1882 |
+
**POST** `/api/v1/chat/{chat_id}/completion`
|
1883 |
|
1884 |
Chat with a chat session
|
1885 |
|
1886 |
### Request
|
1887 |
|
1888 |
- Method: POST
|
1889 |
+
- URL: `http://{address} /api/v1/chat/{chat_id}/completion`
|
1890 |
- Headers:
|
1891 |
- `content-Type: application/json`
|
1892 |
- 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
|
1893 |
- Body:
|
1894 |
- `question`: string
|
1895 |
- `stream`: bool
|
1896 |
+
- `session_id`: str
|
1897 |
|
1898 |
|
1899 |
#### Request example
|
1900 |
```bash
|
1901 |
curl --request POST \
|
1902 |
+
--url http://{address} /api/v1/chat/{chat_id}/completion \
|
1903 |
--header 'Content-Type: application/json' \
|
1904 |
--header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
|
1905 |
--data-binary '{
|
|
|
1915 |
- `stream`: (*Body Parameter*)
|
1916 |
The approach of streaming text generation.
|
1917 |
`False`
|
1918 |
+
- `session_id`: (*Body Parameter*)
|
1919 |
+
The id of session.If not provided, a new session will be generated.
|
1920 |
### Response
|
1921 |
Success
|
1922 |
```json
|
api/python_api_reference.md
CHANGED
@@ -244,42 +244,117 @@ File management inside knowledge base
|
|
244 |
## Upload document
|
245 |
|
246 |
```python
|
247 |
-
|
248 |
```
|
249 |
|
250 |
### Parameters
|
251 |
|
252 |
-
####
|
|
|
253 |
|
254 |
-
#### blob
|
255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
### Returns
|
259 |
|
|
|
260 |
|
261 |
### Examples
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
---
|
264 |
|
265 |
-
##
|
266 |
|
267 |
```python
|
268 |
-
|
269 |
```
|
270 |
|
271 |
### Parameters
|
272 |
|
273 |
-
#### id: `str
|
274 |
|
275 |
-
|
276 |
|
277 |
-
####
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
-
|
|
|
|
|
280 |
|
|
|
|
|
|
|
|
|
|
|
281 |
### Returns
|
282 |
|
|
|
|
|
283 |
A document object containing the following attributes:
|
284 |
|
285 |
#### id: `str`
|
@@ -352,98 +427,14 @@ Duration of the processing in seconds or minutes. Defaults to `0.0`.
|
|
352 |
```python
|
353 |
from ragflow import RAGFlow
|
354 |
|
355 |
-
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
356 |
-
doc = rag.get_document(id="wdfxb5t547d",name='testdocument.txt')
|
357 |
-
print(doc)
|
358 |
-
```
|
359 |
-
|
360 |
-
---
|
361 |
-
|
362 |
-
## Save document settings
|
363 |
-
|
364 |
-
```python
|
365 |
-
Document.save() -> bool
|
366 |
-
```
|
367 |
-
|
368 |
-
### Returns
|
369 |
-
|
370 |
-
bool
|
371 |
-
|
372 |
-
### Examples
|
373 |
-
|
374 |
-
```python
|
375 |
-
from ragflow import RAGFlow
|
376 |
-
|
377 |
-
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
378 |
-
doc = rag.get_document(id="wdfxb5t547d")
|
379 |
-
doc.parser_method= "manual"
|
380 |
-
doc.save()
|
381 |
-
```
|
382 |
-
|
383 |
-
---
|
384 |
-
|
385 |
-
## Download document
|
386 |
-
|
387 |
-
```python
|
388 |
-
Document.download() -> bytes
|
389 |
-
```
|
390 |
-
|
391 |
-
### Returns
|
392 |
-
|
393 |
-
bytes of the document.
|
394 |
-
|
395 |
-
### Examples
|
396 |
-
|
397 |
-
```python
|
398 |
-
from ragflow import RAGFlow
|
399 |
-
|
400 |
-
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
401 |
-
doc = rag.get_document(id="wdfxb5t547d")
|
402 |
-
open("~/ragflow.txt", "w+").write(doc.download())
|
403 |
-
print(doc)
|
404 |
-
```
|
405 |
-
|
406 |
-
---
|
407 |
-
|
408 |
-
## List documents
|
409 |
-
|
410 |
-
```python
|
411 |
-
Dataset.list_docs(keywords: str=None, offset: int=0, limit:int = -1) -> List[Document]
|
412 |
-
```
|
413 |
-
|
414 |
-
### Parameters
|
415 |
-
|
416 |
-
#### keywords: `str`
|
417 |
-
|
418 |
-
List documents whose name has the given keywords. Defaults to `None`.
|
419 |
-
|
420 |
-
#### offset: `int`
|
421 |
-
|
422 |
-
The beginning number of records for paging. Defaults to `0`.
|
423 |
-
|
424 |
-
#### limit: `int`
|
425 |
-
|
426 |
-
Records number to return, -1 means all of them. Records number to return, -1 means all of them.
|
427 |
-
|
428 |
-
### Returns
|
429 |
-
|
430 |
-
List[Document]
|
431 |
-
|
432 |
-
### Examples
|
433 |
-
|
434 |
-
```python
|
435 |
-
from ragflow import RAGFlow
|
436 |
-
|
437 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
438 |
ds = rag.create_dataset(name="kb_1")
|
439 |
|
440 |
filename1 = "~/ragflow.txt"
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
for d in ds.list_docs(keywords="rag", offset=0, limit=12):
|
447 |
print(d)
|
448 |
```
|
449 |
|
@@ -452,12 +443,11 @@ for d in ds.list_docs(keywords="rag", offset=0, limit=12):
|
|
452 |
## Delete documents
|
453 |
|
454 |
```python
|
455 |
-
|
456 |
```
|
457 |
### Returns
|
458 |
|
459 |
-
|
460 |
-
description: delete success or not
|
461 |
|
462 |
### Examples
|
463 |
|
@@ -465,119 +455,87 @@ description: delete success or not
|
|
465 |
from ragflow import RAGFlow
|
466 |
|
467 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
468 |
-
ds = rag.
|
469 |
-
|
470 |
-
|
471 |
-
rag.create_document(ds, name=filename1 , blob=open(filename1 , "rb").read())
|
472 |
-
|
473 |
-
filename2 = "~/infinity.txt"
|
474 |
-
rag.create_document(ds, name=filename2 , blob=open(filename2 , "rb").read())
|
475 |
-
for d in ds.list_docs(keywords="rag", offset=0, limit=12):
|
476 |
-
d.delete()
|
477 |
```
|
478 |
|
479 |
---
|
480 |
|
481 |
-
## Parse document
|
482 |
|
483 |
```python
|
484 |
-
|
485 |
-
|
486 |
```
|
487 |
|
488 |
### Parameters
|
489 |
|
|
|
|
|
490 |
????????????????????????????????????????????????????
|
491 |
|
492 |
### Returns
|
493 |
-
|
494 |
????????????????????????????????????????????????????
|
495 |
|
496 |
### Examples
|
497 |
|
498 |
-
```python
|
499 |
-
#document parse and cancel
|
500 |
-
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
501 |
-
ds = rag.create_dataset(name="dataset_name")
|
502 |
-
name3 = 'ai.pdf'
|
503 |
-
path = 'test_data/ai.pdf'
|
504 |
-
rag.create_document(ds, name=name3, blob=open(path, "rb").read())
|
505 |
-
doc = rag.get_document(name="ai.pdf")
|
506 |
-
doc.async_parse()
|
507 |
-
print("Async parsing initiated")
|
508 |
-
```
|
509 |
-
|
510 |
-
---
|
511 |
-
|
512 |
-
## Cancel document parsing
|
513 |
-
|
514 |
-
```python
|
515 |
-
rag.async_cancel_parse_documents(ids)
|
516 |
-
RAGFLOW.async_cancel_parse_documents()-> None
|
517 |
-
```
|
518 |
-
|
519 |
-
### Parameters
|
520 |
-
|
521 |
-
#### ids, `list[]`
|
522 |
-
|
523 |
-
### Returns
|
524 |
-
|
525 |
-
?????????????????????????????????????????????????
|
526 |
-
|
527 |
-
### Examples
|
528 |
-
|
529 |
```python
|
530 |
#documents parse and cancel
|
531 |
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
532 |
ds = rag.create_dataset(name="God5")
|
533 |
documents = [
|
534 |
-
{'name': 'test1.txt', '
|
535 |
-
{'name': 'test2.txt', '
|
536 |
-
{'name': 'test3.txt', '
|
537 |
]
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
ids = [doc.id for doc in docs]
|
545 |
-
|
546 |
-
rag.async_parse_documents(ids)
|
547 |
print("Async bulk parsing initiated")
|
548 |
-
|
549 |
-
for doc in docs:
|
550 |
-
for progress, msg in doc.join(interval=5, timeout=10):
|
551 |
-
print(f"{doc.name}: Progress: {progress}, Message: {msg}")
|
552 |
-
|
553 |
-
cancel_result = rag.async_cancel_parse_documents(ids)
|
554 |
print("Async bulk parsing cancelled")
|
555 |
```
|
556 |
|
557 |
-
|
558 |
-
|
559 |
-
## Join document
|
560 |
-
|
561 |
-
??????????????????
|
562 |
-
|
563 |
```python
|
564 |
-
Document.
|
565 |
```
|
566 |
-
|
567 |
### Parameters
|
568 |
|
569 |
-
|
|
|
|
|
570 |
|
571 |
-
|
|
|
|
|
572 |
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
|
|
|
|
|
|
|
577 |
### Returns
|
|
|
578 |
|
579 |
-
|
|
|
|
|
580 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
## Add chunk
|
582 |
|
583 |
```python
|
@@ -587,6 +545,9 @@ Document.add_chunk(content:str) -> Chunk
|
|
587 |
### Parameters
|
588 |
|
589 |
#### content: `str`, *Required*
|
|
|
|
|
|
|
590 |
|
591 |
### Returns
|
592 |
|
@@ -598,7 +559,10 @@ chunk
|
|
598 |
from ragflow import RAGFlow
|
599 |
|
600 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
601 |
-
|
|
|
|
|
|
|
602 |
chunk = doc.add_chunk(content="xxxxxxx")
|
603 |
```
|
604 |
|
@@ -607,12 +571,15 @@ chunk = doc.add_chunk(content="xxxxxxx")
|
|
607 |
## Delete chunk
|
608 |
|
609 |
```python
|
610 |
-
|
611 |
```
|
|
|
|
|
|
|
612 |
|
613 |
### Returns
|
614 |
|
615 |
-
|
616 |
|
617 |
### Examples
|
618 |
|
@@ -620,22 +587,34 @@ bool
|
|
620 |
from ragflow import RAGFlow
|
621 |
|
622 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
623 |
-
|
|
|
|
|
|
|
624 |
chunk = doc.add_chunk(content="xxxxxxx")
|
625 |
-
|
626 |
```
|
627 |
|
628 |
---
|
629 |
|
630 |
-
##
|
631 |
|
632 |
```python
|
633 |
-
Chunk.
|
634 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
|
636 |
### Returns
|
637 |
|
638 |
-
|
639 |
|
640 |
### Examples
|
641 |
|
@@ -643,10 +622,12 @@ bool
|
|
643 |
from ragflow import RAGFlow
|
644 |
|
645 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
646 |
-
|
|
|
|
|
|
|
647 |
chunk = doc.add_chunk(content="xxxxxxx")
|
648 |
-
chunk.content
|
649 |
-
chunk.save()
|
650 |
```
|
651 |
|
652 |
---
|
@@ -654,7 +635,7 @@ chunk.save()
|
|
654 |
## Retrieval
|
655 |
|
656 |
```python
|
657 |
-
RAGFlow.
|
658 |
```
|
659 |
|
660 |
### Parameters
|
@@ -691,6 +672,15 @@ The weight of vector cosine similarity, 1 - x is the term similarity weight. Def
|
|
691 |
|
692 |
Number of records engaged in vector cosine computaton. Defaults to `1024`.
|
693 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
694 |
### Returns
|
695 |
|
696 |
List[Chunk]
|
@@ -701,18 +691,17 @@ List[Chunk]
|
|
701 |
from ragflow import RAGFlow
|
702 |
|
703 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
704 |
-
ds = rag.
|
|
|
705 |
name = 'ragflow_test.txt'
|
706 |
-
path = 'test_data/ragflow_test.txt'
|
707 |
rag.create_document(ds, name=name, blob=open(path, "rb").read())
|
708 |
-
doc =
|
709 |
-
doc
|
710 |
-
|
711 |
-
for
|
712 |
-
|
713 |
-
|
714 |
-
datasets=[ds], documents=[doc],
|
715 |
-
offset=0, limit=6, similarity_threshold=0.1,
|
716 |
vector_similarity_weight=0.3,
|
717 |
top_k=1024
|
718 |
):
|
|
|
244 |
## Upload document
|
245 |
|
246 |
```python
|
247 |
+
DataSet.upload_documents(document_list: List[dict])
|
248 |
```
|
249 |
|
250 |
### Parameters
|
251 |
|
252 |
+
#### document_list:`List[dict]`
|
253 |
+
A list composed of dicts containing `name` and `blob`.
|
254 |
|
|
|
255 |
|
256 |
+
### Returns
|
257 |
+
no return
|
258 |
+
|
259 |
+
### Examples
|
260 |
+
```python
|
261 |
+
from ragflow import RAGFlow
|
262 |
+
|
263 |
+
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
264 |
+
ds = rag.create_dataset(name="kb_1")
|
265 |
+
ds.upload_documents([{name="1.txt", blob="123"}, ...] }
|
266 |
+
```
|
267 |
+
---
|
268 |
+
|
269 |
+
## Update document
|
270 |
+
|
271 |
+
```python
|
272 |
+
Document.update(update_message:dict)
|
273 |
+
```
|
274 |
+
|
275 |
+
### Parameters
|
276 |
+
|
277 |
+
#### update_message:`dict`
|
278 |
+
only `name`,`parser_config`,`parser_method` can be changed
|
279 |
+
|
280 |
+
### Returns
|
281 |
+
|
282 |
+
no return
|
283 |
+
|
284 |
+
### Examples
|
285 |
+
|
286 |
+
```python
|
287 |
+
from ragflow import RAGFlow
|
288 |
+
|
289 |
+
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
290 |
+
ds=rag.list_datasets(id='id')
|
291 |
+
ds=ds[0]
|
292 |
+
doc = ds.list_documents(id="wdfxb5t547d")
|
293 |
+
doc = doc[0]
|
294 |
+
doc.update([{"parser_method": "manual"...}])
|
295 |
+
```
|
296 |
+
|
297 |
+
---
|
298 |
|
299 |
+
## Download document
|
300 |
+
|
301 |
+
```python
|
302 |
+
Document.download() -> bytes
|
303 |
+
```
|
304 |
|
305 |
### Returns
|
306 |
|
307 |
+
bytes of the document.
|
308 |
|
309 |
### Examples
|
310 |
|
311 |
+
```python
|
312 |
+
from ragflow import RAGFlow
|
313 |
+
|
314 |
+
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
315 |
+
ds=rag.list_datasets(id="id")
|
316 |
+
ds=ds[0]
|
317 |
+
doc = ds.list_documents(id="wdfxb5t547d")
|
318 |
+
doc = doc[0]
|
319 |
+
open("~/ragflow.txt", "wb+").write(doc.download())
|
320 |
+
print(doc)
|
321 |
+
```
|
322 |
+
|
323 |
---
|
324 |
|
325 |
+
## List documents
|
326 |
|
327 |
```python
|
328 |
+
Dataset.list_documents(id:str =None, keywords: str=None, offset: int=0, limit:int = 1024,order_by:str = "create_time", desc: bool = True) -> List[Document]
|
329 |
```
|
330 |
|
331 |
### Parameters
|
332 |
|
333 |
+
#### id: `str`
|
334 |
|
335 |
+
The id of the document to be got
|
336 |
|
337 |
+
#### keywords: `str`
|
338 |
+
|
339 |
+
List documents whose name has the given keywords. Defaults to `None`.
|
340 |
+
|
341 |
+
#### offset: `int`
|
342 |
+
|
343 |
+
The beginning number of records for paging. Defaults to `0`.
|
344 |
|
345 |
+
#### limit: `int`
|
346 |
+
|
347 |
+
Records number to return, -1 means all of them. Records number to return, -1 means all of them.
|
348 |
|
349 |
+
#### orderby: `str`
|
350 |
+
The field by which the records should be sorted. This specifies the attribute or column used to order the results.
|
351 |
+
|
352 |
+
#### desc:`bool`
|
353 |
+
A boolean flag indicating whether the sorting should be in descending order.
|
354 |
### Returns
|
355 |
|
356 |
+
List[Document]
|
357 |
+
|
358 |
A document object containing the following attributes:
|
359 |
|
360 |
#### id: `str`
|
|
|
427 |
```python
|
428 |
from ragflow import RAGFlow
|
429 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
431 |
ds = rag.create_dataset(name="kb_1")
|
432 |
|
433 |
filename1 = "~/ragflow.txt"
|
434 |
+
blob=open(filename1 , "rb").read()
|
435 |
+
list_files=[{"name":filename1,"blob":blob}]
|
436 |
+
ds.upload_documents(list_files)
|
437 |
+
for d in ds.list_documents(keywords="rag", offset=0, limit=12):
|
|
|
|
|
438 |
print(d)
|
439 |
```
|
440 |
|
|
|
443 |
## Delete documents
|
444 |
|
445 |
```python
|
446 |
+
DataSet.delete_documents(ids: List[str] = None)
|
447 |
```
|
448 |
### Returns
|
449 |
|
450 |
+
no return
|
|
|
451 |
|
452 |
### Examples
|
453 |
|
|
|
455 |
from ragflow import RAGFlow
|
456 |
|
457 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
458 |
+
ds = rag.list_datasets(name="kb_1")
|
459 |
+
ds = ds[0]
|
460 |
+
ds.delete_documents(ids=["id_1","id_2"])
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
```
|
462 |
|
463 |
---
|
464 |
|
465 |
+
## Parse and stop parsing document
|
466 |
|
467 |
```python
|
468 |
+
DataSet.async_parse_documents(document_ids:List[str]) -> None
|
469 |
+
DataSet.async_cancel_parse_documents(document_ids:List[str])-> None
|
470 |
```
|
471 |
|
472 |
### Parameters
|
473 |
|
474 |
+
#### document_ids:`List[str]`
|
475 |
+
The ids of the documents to be parsed
|
476 |
????????????????????????????????????????????????????
|
477 |
|
478 |
### Returns
|
479 |
+
no return
|
480 |
????????????????????????????????????????????????????
|
481 |
|
482 |
### Examples
|
483 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
```python
|
485 |
#documents parse and cancel
|
486 |
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
487 |
ds = rag.create_dataset(name="God5")
|
488 |
documents = [
|
489 |
+
{'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
|
490 |
+
{'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
|
491 |
+
{'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
|
492 |
]
|
493 |
+
ds.upload_documents(documents)
|
494 |
+
documents=ds.list_documents(keywords="test")
|
495 |
+
ids=[]
|
496 |
+
for document in documents:
|
497 |
+
ids.append(document.id)
|
498 |
+
ds.async_parse_documents(ids)
|
|
|
|
|
|
|
499 |
print("Async bulk parsing initiated")
|
500 |
+
ds.async_cancel_parse_documents(ids)
|
|
|
|
|
|
|
|
|
|
|
501 |
print("Async bulk parsing cancelled")
|
502 |
```
|
503 |
|
504 |
+
## List chunks
|
|
|
|
|
|
|
|
|
|
|
505 |
```python
|
506 |
+
Document.list_chunks(keywords: str = None, offset: int = 0, limit: int = -1, id : str = None) -> List[Chunk]
|
507 |
```
|
|
|
508 |
### Parameters
|
509 |
|
510 |
+
- `keywords`: `str`
|
511 |
+
List chunks whose name has the given keywords
|
512 |
+
default: `None`
|
513 |
|
514 |
+
- `offset`: `int`
|
515 |
+
The beginning number of records for paging
|
516 |
+
default: `1`
|
517 |
|
518 |
+
- `limit`: `int`
|
519 |
+
Records number to return
|
520 |
+
default: `30`
|
521 |
|
522 |
+
- `id`: `str`
|
523 |
+
The ID of the chunk to be retrieved
|
524 |
+
default: `None`
|
525 |
### Returns
|
526 |
+
List[chunk]
|
527 |
|
528 |
+
### Examples
|
529 |
+
```python
|
530 |
+
from ragflow import RAGFlow
|
531 |
|
532 |
+
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
533 |
+
ds = rag.list_datasets("123")
|
534 |
+
ds = ds[0]
|
535 |
+
ds.async_parse_documents(["wdfxb5t547d"])
|
536 |
+
for c in doc.list_chunks(keywords="rag", offset=0, limit=12):
|
537 |
+
print(c)
|
538 |
+
```
|
539 |
## Add chunk
|
540 |
|
541 |
```python
|
|
|
545 |
### Parameters
|
546 |
|
547 |
#### content: `str`, *Required*
|
548 |
+
Contains the main text or information of the chunk.
|
549 |
+
#### important_keywords :`List[str]`
|
550 |
+
list the key terms or phrases that are significant or central to the chunk's content.
|
551 |
|
552 |
### Returns
|
553 |
|
|
|
559 |
from ragflow import RAGFlow
|
560 |
|
561 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
562 |
+
ds = rag.list_datasets(id="123")
|
563 |
+
ds = ds[0]
|
564 |
+
doc = ds.list_documents(id="wdfxb5t547d")
|
565 |
+
doc = doc[0]
|
566 |
chunk = doc.add_chunk(content="xxxxxxx")
|
567 |
```
|
568 |
|
|
|
571 |
## Delete chunk
|
572 |
|
573 |
```python
|
574 |
+
Document.delete_chunks(chunk_ids: List[str])
|
575 |
```
|
576 |
+
### Parameters
|
577 |
+
#### chunk_ids:`List[str]`
|
578 |
+
The list of chunk_id
|
579 |
|
580 |
### Returns
|
581 |
|
582 |
+
no return
|
583 |
|
584 |
### Examples
|
585 |
|
|
|
587 |
from ragflow import RAGFlow
|
588 |
|
589 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
590 |
+
ds = rag.list_datasets(id="123")
|
591 |
+
ds = ds[0]
|
592 |
+
doc = ds.list_documents(id="wdfxb5t547d")
|
593 |
+
doc = doc[0]
|
594 |
chunk = doc.add_chunk(content="xxxxxxx")
|
595 |
+
doc.delete_chunks(["id_1","id_2"])
|
596 |
```
|
597 |
|
598 |
---
|
599 |
|
600 |
+
## Update chunk
|
601 |
|
602 |
```python
|
603 |
+
Chunk.update(update_message: dict)
|
604 |
```
|
605 |
+
### Parameters
|
606 |
+
- `content`: `str`
|
607 |
+
Contains the main text or information of the chunk
|
608 |
+
|
609 |
+
- `important_keywords`: `List[str]`
|
610 |
+
List the key terms or phrases that are significant or central to the chunk's content
|
611 |
+
|
612 |
+
- `available`: `int`
|
613 |
+
Indicating the availability status, `0` means unavailable and `1` means available
|
614 |
|
615 |
### Returns
|
616 |
|
617 |
+
no return
|
618 |
|
619 |
### Examples
|
620 |
|
|
|
622 |
from ragflow import RAGFlow
|
623 |
|
624 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
625 |
+
ds = rag.list_datasets(id="123")
|
626 |
+
ds = ds[0]
|
627 |
+
doc = ds.list_documents(id="wdfxb5t547d")
|
628 |
+
doc = doc[0]
|
629 |
chunk = doc.add_chunk(content="xxxxxxx")
|
630 |
+
chunk.update({"content":"sdfx...})
|
|
|
631 |
```
|
632 |
|
633 |
---
|
|
|
635 |
## Retrieval
|
636 |
|
637 |
```python
|
638 |
+
RAGFlow.retrieve(question:str="", datasets:List[str]=None, document=List[str]=None, offset:int=1, limit:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> List[Chunk]
|
639 |
```
|
640 |
|
641 |
### Parameters
|
|
|
672 |
|
673 |
Number of records engaged in vector cosine computaton. Defaults to `1024`.
|
674 |
|
675 |
+
#### rerank_id:`str`
|
676 |
+
ID of the rerank model. Defaults to `None`.
|
677 |
+
|
678 |
+
#### keyword:`bool`
|
679 |
+
Indicating whether keyword-based matching is enabled (True) or disabled (False).
|
680 |
+
|
681 |
+
#### highlight:`bool`
|
682 |
+
|
683 |
+
Specifying whether to enable highlighting of matched terms in the results (True) or not (False).
|
684 |
### Returns
|
685 |
|
686 |
List[Chunk]
|
|
|
691 |
from ragflow import RAGFlow
|
692 |
|
693 |
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
|
694 |
+
ds = rag.list_datasets(name="ragflow")
|
695 |
+
ds = ds[0]
|
696 |
name = 'ragflow_test.txt'
|
697 |
+
path = './test_data/ragflow_test.txt'
|
698 |
rag.create_document(ds, name=name, blob=open(path, "rb").read())
|
699 |
+
doc = ds.list_documents(name=name)
|
700 |
+
doc = doc[0]
|
701 |
+
ds.async_parse_documents([doc.id])
|
702 |
+
for c in rag.retrieve(question="What's ragflow?",
|
703 |
+
datasets=[ds.id], documents=[doc.id],
|
704 |
+
offset=1, limit=30, similarity_threshold=0.2,
|
|
|
|
|
705 |
vector_similarity_weight=0.3,
|
706 |
top_k=1024
|
707 |
):
|
sdk/python/ragflow/modules/chunk.py
CHANGED
@@ -17,32 +17,11 @@ class Chunk(Base):
|
|
17 |
res_dict.pop(k)
|
18 |
super().__init__(rag, res_dict)
|
19 |
|
20 |
-
def delete(self) -> bool:
|
21 |
-
"""
|
22 |
-
Delete the chunk in the document.
|
23 |
-
"""
|
24 |
-
res = self.post('/doc/chunk/rm',
|
25 |
-
{"document_id": self.document_id, 'chunk_ids': [self.id]})
|
26 |
-
res = res.json()
|
27 |
-
if res.get("retmsg") == "success":
|
28 |
-
return True
|
29 |
-
raise Exception(res["retmsg"])
|
30 |
|
31 |
-
def
|
32 |
-
""
|
33 |
-
Save the document details to the server.
|
34 |
-
"""
|
35 |
-
res = self.post('/doc/chunk/set',
|
36 |
-
{"chunk_id": self.id,
|
37 |
-
"knowledgebase_id": self.knowledgebase_id,
|
38 |
-
"name": self.document_name,
|
39 |
-
"content": self.content,
|
40 |
-
"important_keywords": self.important_keywords,
|
41 |
-
"document_id": self.document_id,
|
42 |
-
"available": self.available,
|
43 |
-
})
|
44 |
res = res.json()
|
45 |
-
if res.get("
|
46 |
-
|
47 |
-
|
48 |
|
|
|
17 |
res_dict.pop(k)
|
18 |
super().__init__(rag, res_dict)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def update(self,update_message:dict):
|
22 |
+
res = self.put(f"/dataset/{self.knowledgebase_id}/document/{self.document_id}/chunk/{self.id}",update_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
res = res.json()
|
24 |
+
if res.get("code") != 0 :
|
25 |
+
raise Exception(res["message"])
|
26 |
+
|
27 |
|
sdk/python/ragflow/modules/dataset.py
CHANGED
@@ -65,3 +65,14 @@ class DataSet(Base):
|
|
65 |
if res.get("code") != 0:
|
66 |
raise Exception(res["message"])
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
if res.get("code") != 0:
|
66 |
raise Exception(res["message"])
|
67 |
|
68 |
+
def async_parse_documents(self,document_ids):
|
69 |
+
res = self.post(f"/dataset/{self.id}/chunk",{"document_ids":document_ids})
|
70 |
+
res = res.json()
|
71 |
+
if res.get("code") != 0:
|
72 |
+
raise Exception(res.get("message"))
|
73 |
+
|
74 |
+
def async_cancel_parse_documents(self,document_ids):
|
75 |
+
res = self.rm(f"/dataset/{self.id}/chunk",{"document_ids":document_ids})
|
76 |
+
res = res.json()
|
77 |
+
if res.get("code") != 0:
|
78 |
+
raise Exception(res.get("message"))
|
sdk/python/ragflow/modules/document.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
import time
|
2 |
|
|
|
|
|
3 |
from .base import Base
|
4 |
from .chunk import Chunk
|
|
|
5 |
|
6 |
|
7 |
class Document(Base):
|
@@ -29,160 +32,28 @@ class Document(Base):
|
|
29 |
res_dict.pop(k)
|
30 |
super().__init__(rag, res_dict)
|
31 |
|
32 |
-
def
|
33 |
-
"""
|
34 |
-
|
35 |
-
"""
|
36 |
-
res = self.post(f'/dataset/{self.knowledgebase_id}/info/{self.id}',update_message)
|
37 |
-
res = res.json()
|
38 |
-
if res.get("code") != 0:
|
39 |
-
raise Exception(res["message"])
|
40 |
-
|
41 |
-
def delete(self) -> bool:
|
42 |
-
"""
|
43 |
-
Delete the document from the server.
|
44 |
-
"""
|
45 |
-
res = self.rm('/doc/delete',
|
46 |
-
{"document_id": self.id})
|
47 |
res = res.json()
|
48 |
-
if res.get("
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
:return: The downloaded document content in bytes.
|
57 |
-
"""
|
58 |
-
# Construct the URL for the API request using the document ID and knowledge base ID
|
59 |
-
res = self.get(f"/dataset/{self.knowledgebase_id}/document/{self.id}")
|
60 |
-
|
61 |
-
# Check the response status code to ensure the request was successful
|
62 |
-
if res.status_code == 200:
|
63 |
-
# Return the document content as bytes
|
64 |
-
return res.content
|
65 |
-
else:
|
66 |
-
# Handle the error and raise an exception
|
67 |
-
raise Exception(
|
68 |
-
f"Failed to download document. Server responded with: {res.status_code}, {res.text}"
|
69 |
-
)
|
70 |
-
|
71 |
-
def async_parse(self):
|
72 |
-
"""
|
73 |
-
Initiate document parsing asynchronously without waiting for completion.
|
74 |
-
"""
|
75 |
-
try:
|
76 |
-
# Construct request data including document ID and run status (assuming 1 means to run)
|
77 |
-
data = {"document_ids": [self.id], "run": 1}
|
78 |
-
|
79 |
-
# Send a POST request to the specified parsing status endpoint to start parsing
|
80 |
-
res = self.post(f'/doc/run', data)
|
81 |
-
|
82 |
-
# Check the server response status code
|
83 |
-
if res.status_code != 200:
|
84 |
-
raise Exception(f"Failed to start async parsing: {res.text}")
|
85 |
-
|
86 |
-
print("Async parsing started successfully.")
|
87 |
-
|
88 |
-
except Exception as e:
|
89 |
-
# Catch and handle exceptions
|
90 |
-
print(f"Error occurred during async parsing: {str(e)}")
|
91 |
-
raise
|
92 |
-
|
93 |
-
import time
|
94 |
-
|
95 |
-
def join(self, interval=5, timeout=3600):
|
96 |
-
"""
|
97 |
-
Wait for the asynchronous parsing to complete and yield parsing progress periodically.
|
98 |
-
|
99 |
-
:param interval: The time interval (in seconds) for progress reports.
|
100 |
-
:param timeout: The timeout (in seconds) for the parsing operation.
|
101 |
-
:return: An iterator yielding parsing progress and messages.
|
102 |
-
"""
|
103 |
-
start_time = time.time()
|
104 |
-
while time.time() - start_time < timeout:
|
105 |
-
# Check the parsing status
|
106 |
-
res = self.get(f'/doc/{self.id}/status', {"document_ids": [self.id]})
|
107 |
-
res_data = res.json()
|
108 |
-
data = res_data.get("data", [])
|
109 |
-
|
110 |
-
# Retrieve progress and status message
|
111 |
-
progress = data.get("progress", 0)
|
112 |
-
progress_msg = data.get("status", "")
|
113 |
|
114 |
-
yield progress, progress_msg # Yield progress and message
|
115 |
-
|
116 |
-
if progress == 100: # Parsing completed
|
117 |
-
break
|
118 |
-
|
119 |
-
time.sleep(interval)
|
120 |
-
|
121 |
-
def cancel(self):
|
122 |
-
"""
|
123 |
-
Cancel the parsing task for the document.
|
124 |
-
"""
|
125 |
-
try:
|
126 |
-
# Construct request data, including document ID and action to cancel (assuming 2 means cancel)
|
127 |
-
data = {"document_ids": [self.id], "run": 2}
|
128 |
-
|
129 |
-
# Send a POST request to the specified parsing status endpoint to cancel parsing
|
130 |
-
res = self.post(f'/doc/run', data)
|
131 |
-
|
132 |
-
# Check the server response status code
|
133 |
-
if res.status_code != 200:
|
134 |
-
print("Failed to cancel parsing. Server response:", res.text)
|
135 |
-
else:
|
136 |
-
print("Parsing cancelled successfully.")
|
137 |
-
|
138 |
-
except Exception as e:
|
139 |
-
print(f"Error occurred during async parsing cancellation: {str(e)}")
|
140 |
-
raise
|
141 |
-
|
142 |
-
def list_chunks(self, page=1, offset=0, limit=12,size=30, keywords="", available_int=None):
|
143 |
-
"""
|
144 |
-
List all chunks associated with this document by calling the external API.
|
145 |
-
|
146 |
-
Args:
|
147 |
-
page (int): The page number to retrieve (default 1).
|
148 |
-
size (int): The number of chunks per page (default 30).
|
149 |
-
keywords (str): Keywords for searching specific chunks (default "").
|
150 |
-
available_int (int): Filter for available chunks (optional).
|
151 |
-
|
152 |
-
Returns:
|
153 |
-
list: A list of chunks returned from the API.
|
154 |
-
"""
|
155 |
-
data = {
|
156 |
-
"document_id": self.id,
|
157 |
-
"page": page,
|
158 |
-
"size": size,
|
159 |
-
"keywords": keywords,
|
160 |
-
"offset":offset,
|
161 |
-
"limit":limit
|
162 |
-
}
|
163 |
-
|
164 |
-
if available_int is not None:
|
165 |
-
data["available_int"] = available_int
|
166 |
-
|
167 |
-
res = self.post(f'/doc/chunk/list', data)
|
168 |
-
if res.status_code == 200:
|
169 |
-
res_data = res.json()
|
170 |
-
if res_data.get("retmsg") == "success":
|
171 |
-
chunks=[]
|
172 |
-
for chunk_data in res_data["data"].get("chunks", []):
|
173 |
-
chunk=Chunk(self.rag,chunk_data)
|
174 |
-
chunks.append(chunk)
|
175 |
-
return chunks
|
176 |
-
else:
|
177 |
-
raise Exception(f"Error fetching chunks: {res_data.get('retmsg')}")
|
178 |
-
else:
|
179 |
-
raise Exception(f"API request failed with status code {res.status_code}")
|
180 |
|
181 |
def add_chunk(self, content: str):
|
182 |
-
res = self.post('/
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import time
|
2 |
|
3 |
+
from PIL.ImageFile import raise_oserror
|
4 |
+
|
5 |
from .base import Base
|
6 |
from .chunk import Chunk
|
7 |
+
from typing import List
|
8 |
|
9 |
|
10 |
class Document(Base):
|
|
|
32 |
res_dict.pop(k)
|
33 |
super().__init__(rag, res_dict)
|
34 |
|
35 |
+
def list_chunks(self,offset=0, limit=30, keywords="", id:str=None):
|
36 |
+
data={"document_id": self.id,"keywords": keywords,"offset":offset,"limit":limit,"id":id}
|
37 |
+
res = self.get(f'/dataset/{self.knowledgebase_id}/document/{self.id}/chunk', data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
res = res.json()
|
39 |
+
if res.get("code") == 0:
|
40 |
+
chunks=[]
|
41 |
+
for data in res["data"].get("chunks"):
|
42 |
+
chunk = Chunk(self.rag,data)
|
43 |
+
chunks.append(chunk)
|
44 |
+
return chunks
|
45 |
+
raise Exception(res.get("message"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def add_chunk(self, content: str):
|
49 |
+
res = self.post(f'/dataset/{self.knowledgebase_id}/document/{self.id}/chunk', {"content":content})
|
50 |
+
res = res.json()
|
51 |
+
if res.get("code") == 0:
|
52 |
+
return Chunk(self.rag,res["data"].get("chunk"))
|
53 |
+
raise Exception(res.get("message"))
|
54 |
+
|
55 |
+
def delete_chunks(self,ids:List[str]):
|
56 |
+
res = self.rm(f"dataset/{self.knowledgebase_id}/document/{self.id}/chunk",{"ids":ids})
|
57 |
+
res = res.json()
|
58 |
+
if res.get("code")!=0:
|
59 |
+
raise Exception(res.get("message"))
|
sdk/python/ragflow/modules/session.py
CHANGED
@@ -15,8 +15,8 @@ class Session(Base):
|
|
15 |
for message in self.messages:
|
16 |
if "reference" in message:
|
17 |
message.pop("reference")
|
18 |
-
res = self.post(f"/chat/{self.chat_id}/
|
19 |
-
{"question": question, "stream": True}, stream=stream)
|
20 |
for line in res.iter_lines():
|
21 |
line = line.decode("utf-8")
|
22 |
if line.startswith("{"):
|
@@ -82,3 +82,4 @@ class Chunk(Base):
|
|
82 |
self.term_similarity = None
|
83 |
self.positions = None
|
84 |
super().__init__(rag, res_dict)
|
|
|
|
15 |
for message in self.messages:
|
16 |
if "reference" in message:
|
17 |
message.pop("reference")
|
18 |
+
res = self.post(f"/chat/{self.chat_id}/completion",
|
19 |
+
{"question": question, "stream": True,"session_id":self.id}, stream=stream)
|
20 |
for line in res.iter_lines():
|
21 |
line = line.decode("utf-8")
|
22 |
if line.startswith("{"):
|
|
|
82 |
self.term_similarity = None
|
83 |
self.positions = None
|
84 |
super().__init__(rag, res_dict)
|
85 |
+
|
sdk/python/ragflow/ragflow.py
CHANGED
@@ -158,105 +158,30 @@ class RAGFlow:
|
|
158 |
raise Exception(res["message"])
|
159 |
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
"""
|
164 |
-
Asynchronously start parsing multiple documents without waiting for completion.
|
165 |
-
|
166 |
-
:param doc_ids: A list containing multiple document IDs.
|
167 |
-
"""
|
168 |
-
try:
|
169 |
-
if not doc_ids or not isinstance(doc_ids, list):
|
170 |
-
raise ValueError("doc_ids must be a non-empty list of document IDs")
|
171 |
-
|
172 |
-
data = {"document_ids": doc_ids, "run": 1}
|
173 |
-
|
174 |
-
res = self.post(f'/doc/run', data)
|
175 |
-
|
176 |
-
if res.status_code != 200:
|
177 |
-
raise Exception(f"Failed to start async parsing for documents: {res.text}")
|
178 |
-
|
179 |
-
print(f"Async parsing started successfully for documents: {doc_ids}")
|
180 |
-
|
181 |
-
except Exception as e:
|
182 |
-
print(f"Error occurred during async parsing for documents: {str(e)}")
|
183 |
-
raise
|
184 |
-
|
185 |
-
def async_cancel_parse_documents(self, doc_ids):
|
186 |
-
"""
|
187 |
-
Cancel the asynchronous parsing of multiple documents.
|
188 |
-
|
189 |
-
:param doc_ids: A list containing multiple document IDs.
|
190 |
-
"""
|
191 |
-
try:
|
192 |
-
if not doc_ids or not isinstance(doc_ids, list):
|
193 |
-
raise ValueError("doc_ids must be a non-empty list of document IDs")
|
194 |
-
data = {"document_ids": doc_ids, "run": 2}
|
195 |
-
res = self.post(f'/doc/run', data)
|
196 |
-
|
197 |
-
if res.status_code != 200:
|
198 |
-
raise Exception(f"Failed to cancel async parsing for documents: {res.text}")
|
199 |
-
|
200 |
-
print(f"Async parsing canceled successfully for documents: {doc_ids}")
|
201 |
-
|
202 |
-
except Exception as e:
|
203 |
-
print(f"Error occurred during canceling parsing for documents: {str(e)}")
|
204 |
-
raise
|
205 |
-
|
206 |
-
def retrieval(self,
|
207 |
-
question,
|
208 |
-
datasets=None,
|
209 |
-
documents=None,
|
210 |
-
offset=0,
|
211 |
-
limit=6,
|
212 |
-
similarity_threshold=0.1,
|
213 |
-
vector_similarity_weight=0.3,
|
214 |
-
top_k=1024):
|
215 |
-
"""
|
216 |
-
Perform document retrieval based on the given parameters.
|
217 |
-
|
218 |
-
:param question: The query question.
|
219 |
-
:param datasets: A list of datasets (optional, as documents may be provided directly).
|
220 |
-
:param documents: A list of documents (if specific documents are provided).
|
221 |
-
:param offset: Offset for the retrieval results.
|
222 |
-
:param limit: Maximum number of retrieval results.
|
223 |
-
:param similarity_threshold: Similarity threshold.
|
224 |
-
:param vector_similarity_weight: Weight of vector similarity.
|
225 |
-
:param top_k: Number of top most similar documents to consider (for pre-filtering or ranking).
|
226 |
-
|
227 |
-
Note: This is a hypothetical implementation and may need adjustments based on the actual backend service API.
|
228 |
-
"""
|
229 |
-
try:
|
230 |
-
data = {
|
231 |
-
"question": question,
|
232 |
-
"datasets": datasets if datasets is not None else [],
|
233 |
-
"documents": [doc.id if hasattr(doc, 'id') else doc for doc in
|
234 |
-
documents] if documents is not None else [],
|
235 |
"offset": offset,
|
236 |
"limit": limit,
|
237 |
"similarity_threshold": similarity_threshold,
|
238 |
"vector_similarity_weight": vector_similarity_weight,
|
239 |
"top_k": top_k,
|
240 |
"knowledgebase_id": datasets,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
}
|
242 |
|
243 |
# Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
|
244 |
-
res = self.
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
chunks
|
251 |
-
|
252 |
-
|
253 |
-
chunks.append(chunk)
|
254 |
-
return chunks
|
255 |
-
else:
|
256 |
-
raise Exception(f"Error fetching chunks: {res_data.get('retmsg')}")
|
257 |
-
else:
|
258 |
-
raise Exception(f"API request failed with status code {res.status_code}")
|
259 |
-
|
260 |
-
except Exception as e:
|
261 |
-
print(f"An error occurred during retrieval: {e}")
|
262 |
-
raise
|
|
|
158 |
raise Exception(res["message"])
|
159 |
|
160 |
|
161 |
+
def retrieve(self, question="",datasets=None,documents=None, offset=1, limit=30, similarity_threshold=0.2,vector_similarity_weight=0.3,top_k=1024,rerank_id:str=None,keyword:bool=False,):
|
162 |
+
data_params = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
"offset": offset,
|
164 |
"limit": limit,
|
165 |
"similarity_threshold": similarity_threshold,
|
166 |
"vector_similarity_weight": vector_similarity_weight,
|
167 |
"top_k": top_k,
|
168 |
"knowledgebase_id": datasets,
|
169 |
+
"rerank_id":rerank_id,
|
170 |
+
"keyword":keyword
|
171 |
+
}
|
172 |
+
data_json ={
|
173 |
+
"question": question,
|
174 |
+
"datasets": datasets,
|
175 |
+
"documents": documents
|
176 |
}
|
177 |
|
178 |
# Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
|
179 |
+
res = self.get(f'/retrieval', data_params,data_json)
|
180 |
+
res = res.json()
|
181 |
+
if res.get("code") ==0:
|
182 |
+
chunks=[]
|
183 |
+
for chunk_data in res["data"].get("chunks"):
|
184 |
+
chunk=Chunk(self,chunk_data)
|
185 |
+
chunks.append(chunk)
|
186 |
+
return chunks
|
187 |
+
raise Exception(res.get("message"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sdk/python/test/t_document.py
CHANGED
@@ -63,17 +63,13 @@ class TestDocument(TestSdk):
|
|
63 |
# Check if the retrieved document is of type Document
|
64 |
if isinstance(doc, Document):
|
65 |
# Download the document content and save it to a file
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
assert True, "Document downloaded successfully."
|
74 |
-
except Exception as e:
|
75 |
-
# If an error occurs, raise an assertion error
|
76 |
-
assert False, f"Failed to download document, error: {str(e)}"
|
77 |
else:
|
78 |
# If the document retrieval fails, assert failure
|
79 |
assert False, f"Failed to get document, error: {doc}"
|
@@ -100,7 +96,7 @@ class TestDocument(TestSdk):
|
|
100 |
blob2 = b"Sample document content for ingestion test222."
|
101 |
list_1 = [{"name":name1,"blob":blob1},{"name":name2,"blob":blob2}]
|
102 |
ds.upload_documents(list_1)
|
103 |
-
for d in ds.
|
104 |
assert isinstance(d, Document), "Failed to upload documents"
|
105 |
|
106 |
def test_delete_documents_in_dataset_with_success(self):
|
@@ -123,16 +119,11 @@ class TestDocument(TestSdk):
|
|
123 |
blob1 = b"Sample document content for ingestion test333."
|
124 |
name2 = "Test Document444.txt"
|
125 |
blob2 = b"Sample document content for ingestion test444."
|
126 |
-
|
127 |
-
|
128 |
-
rag.create_document(ds, name=name3, blob=open(path, "rb").read())
|
129 |
-
rag.create_document(ds, name=name1, blob=blob1)
|
130 |
-
rag.create_document(ds, name=name2, blob=blob2)
|
131 |
-
for d in ds.list_docs(keywords="document", offset=0, limit=12):
|
132 |
assert isinstance(d, Document)
|
133 |
-
d.
|
134 |
-
|
135 |
-
remaining_docs = ds.list_docs(keywords="rag", offset=0, limit=12)
|
136 |
assert len(remaining_docs) == 0, "Documents were not properly deleted."
|
137 |
|
138 |
def test_parse_and_cancel_document(self):
|
@@ -144,16 +135,15 @@ class TestDocument(TestSdk):
|
|
144 |
|
145 |
# Define the document name and path
|
146 |
name3 = 'westworld.pdf'
|
147 |
-
path = 'test_data/westworld.pdf'
|
148 |
|
149 |
# Create a document in the dataset using the file path
|
150 |
-
|
151 |
|
152 |
# Retrieve the document by name
|
153 |
-
doc = rag.
|
154 |
-
|
155 |
-
|
156 |
-
doc.async_parse()
|
157 |
|
158 |
# Print message to confirm asynchronous parsing has been initiated
|
159 |
print("Async parsing initiated")
|
|
|
63 |
# Check if the retrieved document is of type Document
|
64 |
if isinstance(doc, Document):
|
65 |
# Download the document content and save it to a file
|
66 |
+
with open("./ragflow.txt", "wb+") as file:
|
67 |
+
file.write(doc.download())
|
68 |
+
# Print the document object for debugging
|
69 |
+
print(doc)
|
70 |
+
|
71 |
+
# Assert that the download was successful
|
72 |
+
assert True, f"Failed to download document, error: {doc}"
|
|
|
|
|
|
|
|
|
73 |
else:
|
74 |
# If the document retrieval fails, assert failure
|
75 |
assert False, f"Failed to get document, error: {doc}"
|
|
|
96 |
blob2 = b"Sample document content for ingestion test222."
|
97 |
list_1 = [{"name":name1,"blob":blob1},{"name":name2,"blob":blob2}]
|
98 |
ds.upload_documents(list_1)
|
99 |
+
for d in ds.list_documents(keywords="test", offset=0, limit=12):
|
100 |
assert isinstance(d, Document), "Failed to upload documents"
|
101 |
|
102 |
def test_delete_documents_in_dataset_with_success(self):
|
|
|
119 |
blob1 = b"Sample document content for ingestion test333."
|
120 |
name2 = "Test Document444.txt"
|
121 |
blob2 = b"Sample document content for ingestion test444."
|
122 |
+
ds.upload_documents([{"name":name1,"blob":blob1},{"name":name2,"blob":blob2}])
|
123 |
+
for d in ds.list_documents(keywords="document", offset=0, limit=12):
|
|
|
|
|
|
|
|
|
124 |
assert isinstance(d, Document)
|
125 |
+
ds.delete_documents([d.id])
|
126 |
+
remaining_docs = ds.list_documents(keywords="rag", offset=0, limit=12)
|
|
|
127 |
assert len(remaining_docs) == 0, "Documents were not properly deleted."
|
128 |
|
129 |
def test_parse_and_cancel_document(self):
|
|
|
135 |
|
136 |
# Define the document name and path
|
137 |
name3 = 'westworld.pdf'
|
138 |
+
path = './test_data/westworld.pdf'
|
139 |
|
140 |
# Create a document in the dataset using the file path
|
141 |
+
ds.upload_documents({"name":name3, "blob":open(path, "rb").read()})
|
142 |
|
143 |
# Retrieve the document by name
|
144 |
+
doc = rag.list_documents(name="westworld.pdf")
|
145 |
+
doc = doc[0]
|
146 |
+
ds.async_parse_documents(document_ids=[])
|
|
|
147 |
|
148 |
# Print message to confirm asynchronous parsing has been initiated
|
149 |
print("Async parsing initiated")
|