File size: 18,261 Bytes
3079197
484e5ab
3079197
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
362b09b
8bc2fc9
362b09b
 
8bc2fc9
 
 
 
 
 
 
 
362b09b
3079197
 
 
 
 
6224edc
14174de
362b09b
6224edc
f9dd38e
14174de
b9d91e7
3198faf
f9dd38e
3079197
6224edc
 
44731b3
9bf75d4
6224edc
f9dd38e
 
b691127
f9dd38e
 
 
 
22fe41e
f9dd38e
 
 
3079197
 
 
6224edc
64a0633
f666f56
6224edc
407b252
6224edc
 
 
e6acaf6
407b252
5e0a689
41c7a59
1ed30a6
6054f54
6ed07a9
6054f54
6224edc
 
362b09b
f9dd38e
362b09b
 
 
 
 
 
3079197
f9dd38e
6cdee07
41c7a59
79ada0b
6224edc
 
e6acaf6
6224edc
 
41c7a59
b83edb4
028fe40
6224edc
41c7a59
 
6224edc
407b252
22fe41e
8bc2fc9
3079197
d1675fa
41c7a59
6cdee07
 
 
 
3079197
 
1d93b24
f9dd38e
1d93b24
f9dd38e
6cdee07
f9dd38e
6cdee07
1d93b24
 
22fe41e
8bc2fc9
1d93b24
 
6cdee07
 
 
1d93b24
 
8bc2fc9
3079197
1d93b24
fde0f31
8bc2fc9
fde0f31
 
6224edc
2436df2
 
6224edc
3079197
8f9784a
8a0181f
4d0b8a7
8f9784a
3079197
41c7a59
3079197
c5ea37c
028fe40
3079197
3198faf
41c7a59
 
 
 
 
407b252
3079197
8f9784a
8a0181f
 
8bc2fc9
028fe40
f9dd38e
 
8bc2fc9
14174de
3079197
 
7b6896b
3079197
f9dd38e
8bc2fc9
7b6896b
3198faf
7b6896b
 
 
 
8bc2fc9
7b6896b
f9dd38e
7b6896b
8bc2fc9
a8294f2
3079197
6224edc
3079197
6224edc
b691127
3079197
3cefaa0
6224edc
3079197
6224edc
34b2ab3
41c7a59
028fe40
b691127
362b09b
 
6224edc
b691127
 
 
 
3079197
 
 
f895b25
 
 
 
 
 
 
 
b691127
f895b25
22fe41e
8bc2fc9
3079197
b691127
407b252
3079197
8bc2fc9
3079197
a92e785
c337e13
a92e785
 
 
 
 
 
c337e13
a92e785
 
c337e13
a92e785
 
 
 
 
 
 
 
 
 
c337e13
a92e785
3079197
 
 
b691127
3079197
b691127
3079197
 
f9dd38e
 
 
9fe9fc4
41c7a59
8f39e7a
3079197
e6acaf6
9fe9fc4
 
 
 
 
 
 
 
 
 
e6acaf6
279ca43
9fe9fc4
79ada0b
 
 
 
 
b83edb4
79ada0b
b83edb4
 
5e0a689
41c7a59
 
e6acaf6
3079197
b691127
3079197
c372afe
b691127
6224edc
b691127
3079197
 
2436df2
 
b691127
 
2436df2
b691127
2436df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b691127
362b09b
 
2436df2
 
 
 
 
 
b691127
2436df2
 
1d93b24
 
3079197
 
 
 
c5ea37c
e32ef75
ba51460
e32ef75
0e3c0e9
8bc2fc9
3079197
e32ef75
2436df2
 
 
b691127
2436df2
 
8bc2fc9
2436df2
 
 
 
8bc2fc9
2436df2
 
 
 
 
 
 
 
c337e13
 
2436df2
 
b691127
2436df2
 
8bc2fc9
2436df2
8bc2fc9
c337e13
3079197
8bc2fc9
b691127
 
b9d91e7
5d16bca
584001f
2436df2
b691127
5d16bca
 
 
8bc2fc9
3079197
362b09b
b691127
8bc2fc9
3079197
e6acaf6
b691127
407b252
c337e13
e6acaf6
41c7a59
 
8bc2fc9
73099c4
028fe40
3079197
 
35ced66
362b09b
 
35ced66
 
362b09b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22fe41e
8bc2fc9
6bcaa26
35ced66
6cdee07
3079197
362b09b
 
 
35ced66
e06e08c
1d93b24
6cdee07
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import logging
import sys
from api.utils.log_utils import initRootLogger
CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
initRootLogger(f"task_executor_{CONSUMER_NO}")
for module in ["pdfminer"]:
    module_logger = logging.getLogger(module)
    module_logger.setLevel(logging.WARNING)
for module in ["peewee"]:
    module_logger = logging.getLogger(module)
    module_logger.handlers.clear()
    module_logger.propagate = True

from datetime import datetime
import json
import os
import hashlib
import copy
import re
import sys
import time
import threading
from functools import partial
from io import BytesIO
from multiprocessing.context import TimeoutError
from timeit import default_timer as timer

import numpy as np
import pandas as pd

from api.db import LLMType, ParserType
from api.db.services.dialog_service import keyword_extraction, question_proposal
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import LLMBundle
from api.db.services.task_service import TaskService
from api.db.services.file2document_service import File2DocumentService
from api.settings import retrievaler, docStoreConn
from api.db.db_models import close_connection
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, knowledge_graph, email
from rag.nlp import search, rag_tokenizer
from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME
from rag.utils import rmSpace, num_tokens_from_string
from rag.utils.redis_conn import REDIS_CONN, Payload
from rag.utils.storage_factory import STORAGE_IMPL

BATCH_SIZE = 64

FACTORY = {
    "general": naive,
    ParserType.NAIVE.value: naive,
    ParserType.PAPER.value: paper,
    ParserType.BOOK.value: book,
    ParserType.PRESENTATION.value: presentation,
    ParserType.MANUAL.value: manual,
    ParserType.LAWS.value: laws,
    ParserType.QA.value: qa,
    ParserType.TABLE.value: table,
    ParserType.RESUME.value: resume,
    ParserType.PICTURE.value: picture,
    ParserType.ONE.value: one,
    ParserType.AUDIO.value: audio,
    ParserType.EMAIL.value: email,
    ParserType.KG.value: knowledge_graph
}

CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
PAYLOAD: Payload | None = None
BOOT_AT = datetime.now().isoformat()
DONE_TASKS = 0
RETRY_TASKS = 0
PENDING_TASKS = 0
HEAD_CREATED_AT = ""
HEAD_DETAIL = ""

def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
    global PAYLOAD
    if prog is not None and prog < 0:
        msg = "[ERROR]" + msg
    cancel = TaskService.do_cancel(task_id)
    if cancel:
        msg += " [Canceled]"
        prog = -1

    if to_page > 0:
        if msg:
            msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
    d = {"progress_msg": msg}
    if prog is not None:
        d["progress"] = prog
    try:
        TaskService.update_progress(task_id, d)
    except Exception:
        logging.exception(f"set_progress({task_id}) got exception")

    close_connection()
    if cancel:
        if PAYLOAD:
            PAYLOAD.ack()
            PAYLOAD = None
        os._exit(0)


def collect():
    global CONSUMER_NAME, PAYLOAD
    try:
        PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
        if not PAYLOAD:
            PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
        if not PAYLOAD:
            time.sleep(1)
            return pd.DataFrame()
    except Exception:
        logging.exception("Get task event from queue exception")
        return pd.DataFrame()

    msg = PAYLOAD.get_message()
    if not msg:
        return pd.DataFrame()

    if TaskService.do_cancel(msg["id"]):
        logging.info("Task {} has been canceled.".format(msg["id"]))
        return pd.DataFrame()
    tasks = TaskService.get_tasks(msg["id"])
    if not tasks:
        logging.warning("{} empty task!".format(msg["id"]))
        return []

    tasks = pd.DataFrame(tasks)
    if msg.get("type", "") == "raptor":
        tasks["task_type"] = "raptor"
    return tasks


def get_storage_binary(bucket, name):
    return STORAGE_IMPL.get(bucket, name)


def build(row):
    if row["size"] > DOC_MAXIMUM_SIZE:
        set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
                                             (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
        return []

    callback = partial(
        set_progress,
        row["id"],
        row["from_page"],
        row["to_page"])
    chunker = FACTORY[row["parser_id"].lower()]
    try:
        st = timer()
        bucket, name = File2DocumentService.get_storage_address(doc_id=row["doc_id"])
        binary = get_storage_binary(bucket, name)
        logging.info(
            "From minio({}) {}/{}".format(timer() - st, row["location"], row["name"]))
    except TimeoutError:
        callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
        logging.exception("Minio {}/{} got timeout: Fetch file from minio timeout.".format(row["location"], row["name"]))
        return
    except Exception as e:
        if re.search("(No such file|not found)", str(e)):
            callback(-1, "Can not find file <%s> from minio. Could you try it again?" % row["name"])
        else:
            callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
        logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
        return

    try:
        cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
                            to_page=row["to_page"], lang=row["language"], callback=callback,
                            kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
        logging.info("Chunking({}) {}/{} done".format(timer() - st, row["location"], row["name"]))
    except Exception as e:
        callback(-1, "Internal server error while chunking: %s" %
                     str(e).replace("'", ""))
        logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
        return

    docs = []
    doc = {
        "doc_id": row["doc_id"],
        "kb_id": str(row["kb_id"])
    }
    el = 0
    for ck in cks:
        d = copy.deepcopy(doc)
        d.update(ck)
        md5 = hashlib.md5()
        md5.update((ck["content_with_weight"] +
                    str(d["doc_id"])).encode("utf-8"))
        d["id"] = md5.hexdigest()
        d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
        d["create_timestamp_flt"] = datetime.now().timestamp()
        if not d.get("image"):
            d["img_id"] = ""
            d["page_num_list"] = json.dumps([])
            d["position_list"] = json.dumps([])
            d["top_list"] = json.dumps([])
            docs.append(d)
            continue

        try:
            output_buffer = BytesIO()
            if isinstance(d["image"], bytes):
                output_buffer = BytesIO(d["image"])
            else:
                d["image"].save(output_buffer, format='JPEG')

            st = timer()
            STORAGE_IMPL.put(row["kb_id"], d["id"], output_buffer.getvalue())
            el += timer() - st
        except Exception:
            logging.exception("Saving image of chunk {}/{}/{} got exception".format(row["location"], row["name"], d["_id"]))

        d["img_id"] = "{}-{}".format(row["kb_id"], d["id"])
        del d["image"]
        docs.append(d)
    logging.info("MINIO PUT({}):{}".format(row["name"], el))

    if row["parser_config"].get("auto_keywords", 0):
        st = timer()
        callback(msg="Start to generate keywords for every chunk ...")
        chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
        for d in docs:
            d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
                                                    row["parser_config"]["auto_keywords"]).split(",")
            d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
        callback(msg="Keywords generation completed in {:.2f}s".format(timer()-st))

    if row["parser_config"].get("auto_questions", 0):
        st = timer()
        callback(msg="Start to generate questions for every chunk ...")
        chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
        for d in docs:
            qst = question_proposal(chat_mdl, d["content_with_weight"], row["parser_config"]["auto_questions"])
            d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"]
            qst = rag_tokenizer.tokenize(qst)
            if "content_ltks" in d:
                d["content_ltks"] += " " + qst
            if "content_sm_ltks" in d:
                d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst)
        callback(msg="Question generation completed in {:.2f}s".format(timer()-st))

    return docs


def init_kb(row, vector_size: int):
    idxnm = search.index_name(row["tenant_id"])
    return docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)


def embedding(docs, mdl, parser_config=None, callback=None):
    if parser_config is None:
        parser_config = {}
    batch_size = 32
    tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
        re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
    tk_count = 0
    if len(tts) == len(cnts):
        tts_ = np.array([])
        for i in range(0, len(tts), batch_size):
            vts, c = mdl.encode(tts[i: i + batch_size])
            if len(tts_) == 0:
                tts_ = vts
            else:
                tts_ = np.concatenate((tts_, vts), axis=0)
            tk_count += c
            callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
        tts = tts_

    cnts_ = np.array([])
    for i in range(0, len(cnts), batch_size):
        vts, c = mdl.encode(cnts[i: i + batch_size])
        if len(cnts_) == 0:
            cnts_ = vts
        else:
            cnts_ = np.concatenate((cnts_, vts), axis=0)
        tk_count += c
        callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
    cnts = cnts_

    title_w = float(parser_config.get("filename_embd_weight", 0.1))
    vects = (title_w * tts + (1 - title_w) *
             cnts) if len(tts) == len(cnts) else cnts

    assert len(vects) == len(docs)
    vector_size = 0
    for i, d in enumerate(docs):
        v = vects[i].tolist()
        vector_size = len(v)
        d["q_%d_vec" % len(v)] = v
    return tk_count, vector_size


def run_raptor(row, chat_mdl, embd_mdl, callback=None):
    vts, _ = embd_mdl.encode(["ok"])
    vector_size = len(vts[0])
    vctr_nm = "q_%d_vec" % vector_size
    chunks = []
    for d in retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])], fields=["content_with_weight", vctr_nm]):
        chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))

    raptor = Raptor(
        row["parser_config"]["raptor"].get("max_cluster", 64),
        chat_mdl,
        embd_mdl,
        row["parser_config"]["raptor"]["prompt"],
        row["parser_config"]["raptor"]["max_token"],
        row["parser_config"]["raptor"]["threshold"]
    )
    original_length = len(chunks)
    raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
    doc = {
        "doc_id": row["doc_id"],
        "kb_id": [str(row["kb_id"])],
        "docnm_kwd": row["name"],
        "title_tks": rag_tokenizer.tokenize(row["name"])
    }
    res = []
    tk_count = 0
    for content, vctr in chunks[original_length:]:
        d = copy.deepcopy(doc)
        md5 = hashlib.md5()
        md5.update((content + str(d["doc_id"])).encode("utf-8"))
        d["id"] = md5.hexdigest()
        d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
        d["create_timestamp_flt"] = datetime.now().timestamp()
        d[vctr_nm] = vctr.tolist()
        d["content_with_weight"] = content
        d["content_ltks"] = rag_tokenizer.tokenize(content)
        d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
        res.append(d)
        tk_count += num_tokens_from_string(content)
    return res, tk_count, vector_size


def main():
    rows = collect()
    if len(rows) == 0:
        return

    for _, r in rows.iterrows():
        callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
        try:
            embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
        except Exception as e:
            callback(-1, msg=str(e))
            logging.exception("LLMBundle got exception")
            continue

        if r.get("task_type", "") == "raptor":
            try:
                chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
                cks, tk_count, vector_size = run_raptor(r, chat_mdl, embd_mdl, callback)
            except Exception as e:
                callback(-1, msg=str(e))
                logging.exception("run_raptor got exception")
                continue
        else:
            st = timer()
            cks = build(r)
            logging.info("Build chunks({}): {}".format(r["name"], timer() - st))
            if cks is None:
                continue
            if not cks:
                callback(1., "No chunk! Done!")
                continue
            # TODO: exception handler
            ## set_progress(r["did"], -1, "ERROR: ")
            callback(
                msg="Finished slicing files ({} chunks in {:.2f}s). Start to embedding the content.".format(len(cks), timer() - st)
            )
            st = timer()
            try:
                tk_count, vector_size = embedding(cks, embd_mdl, r["parser_config"], callback)
            except Exception as e:
                callback(-1, "Embedding error:{}".format(str(e)))
                logging.exception("run_rembedding got exception")
                tk_count = 0
            logging.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
            callback(msg="Finished embedding (in {:.2f}s)! Start to build index!".format(timer() - st))

        # logging.info(f"task_executor init_kb index {search.index_name(r["tenant_id"])} embd_mdl {embd_mdl.llm_name} vector length {vector_size}")
        init_kb(r, vector_size)
        chunk_count = len(set([c["id"] for c in cks]))
        st = timer()
        es_r = ""
        es_bulk_size = 4
        for b in range(0, len(cks), es_bulk_size):
            es_r = docStoreConn.insert(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]), r["kb_id"])
            if b % 128 == 0:
                callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")

        logging.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
        if es_r:
            callback(-1, "Insert chunk error, detail info please check log file. Please also check ES status!")
            docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
            logging.error('Insert chunk error: ' + str(es_r))
        else:
            if TaskService.do_cancel(r["id"]):
                docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
                continue
            callback(msg="Indexing elapsed in {:.2f}s.".format(timer() - st))
            callback(1., "Done!")
            DocumentService.increment_chunk_num(
                r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
            logging.info(
                "Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
                    r["id"], tk_count, len(cks), timer() - st))


def report_status():
    global CONSUMER_NAME, BOOT_AT, DONE_TASKS, RETRY_TASKS, PENDING_TASKS, HEAD_CREATED_AT, HEAD_DETAIL
    REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
    while True:
        try:
            now = datetime.now()
            PENDING_TASKS = REDIS_CONN.queue_length(SVR_QUEUE_NAME)
            if PENDING_TASKS > 0:
                head_info = REDIS_CONN.queue_head(SVR_QUEUE_NAME)
                if head_info is not None:
                    seconds = int(head_info[0].split("-")[0])/1000
                    HEAD_CREATED_AT = datetime.fromtimestamp(seconds).isoformat()
                    HEAD_DETAIL = head_info[1]

            heartbeat = json.dumps({
                "name": CONSUMER_NAME,
                "now": now.isoformat(),
                "boot_at": BOOT_AT,
                "done": DONE_TASKS,
                "retry": RETRY_TASKS,
                "pending": PENDING_TASKS,
                "head_created_at": HEAD_CREATED_AT,
                "head_detail": HEAD_DETAIL,
            })
            REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
            logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")

            expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60*30)
            if expired > 0:
                REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
        except Exception:
            logging.exception("report_status got exception")
        time.sleep(30)


if __name__ == "__main__":
    background_thread = threading.Thread(target=report_status)
    background_thread.daemon = True
    background_thread.start()

    while True:
        main()
        if PAYLOAD:
            PAYLOAD.ack()
            PAYLOAD = None