KevinHuSh
commited on
Commit
·
6224edc
1
Parent(s):
af3ef26
Add task moduel, and pipline the task and every parser (#49)
Browse files- api/apps/document_app.py +23 -1
- api/db/__init__.py +11 -0
- api/db/db_models.py +13 -67
- api/db/db_utils.py +9 -9
- api/db/services/common_service.py +1 -0
- api/db/services/document_service.py +14 -2
- api/db/services/task_service.py +53 -0
- rag/app/__init__.py +3 -1
- rag/app/laws.py +10 -8
- rag/app/manual.py +8 -15
- rag/app/paper.py +6 -8
- rag/app/presentation.py +8 -9
- rag/parser/pdf_parser.py +9 -0
- rag/svr/task_broker.py +130 -0
- rag/svr/{parse_user_docs.py → task_executor.py} +70 -116
api/apps/document_app.py
CHANGED
@@ -22,6 +22,8 @@ from elasticsearch_dsl import Q
|
|
22 |
from flask import request
|
23 |
from flask_login import login_required, current_user
|
24 |
|
|
|
|
|
25 |
from rag.nlp import search
|
26 |
from rag.utils import ELASTICSEARCH
|
27 |
from api.db.services import duplicate_name
|
@@ -205,6 +207,26 @@ def rm():
|
|
205 |
return server_error_response(e)
|
206 |
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
@manager.route('/rename', methods=['POST'])
|
209 |
@login_required
|
210 |
@validate_request("doc_id", "name", "old_name")
|
@@ -262,7 +284,7 @@ def change_parser():
|
|
262 |
if doc.parser_id.lower() == req["parser_id"].lower():
|
263 |
return get_json_result(data=True)
|
264 |
|
265 |
-
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": ""})
|
266 |
if not e:
|
267 |
return get_data_error_result(retmsg="Document not found!")
|
268 |
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1)
|
|
|
22 |
from flask import request
|
23 |
from flask_login import login_required, current_user
|
24 |
|
25 |
+
from api.db.db_models import Task
|
26 |
+
from api.db.services.task_service import TaskService
|
27 |
from rag.nlp import search
|
28 |
from rag.utils import ELASTICSEARCH
|
29 |
from api.db.services import duplicate_name
|
|
|
207 |
return server_error_response(e)
|
208 |
|
209 |
|
210 |
+
@manager.route('/run', methods=['POST'])
|
211 |
+
@login_required
|
212 |
+
@validate_request("doc_ids", "run")
|
213 |
+
def rm():
|
214 |
+
req = request.json
|
215 |
+
try:
|
216 |
+
for id in req["doc_ids"]:
|
217 |
+
DocumentService.update_by_id(id, {"run": str(req["run"])})
|
218 |
+
if req["run"] == "2":
|
219 |
+
TaskService.filter_delete([Task.doc_id == id])
|
220 |
+
tenant_id = DocumentService.get_tenant_id(id)
|
221 |
+
if not tenant_id:
|
222 |
+
return get_data_error_result(retmsg="Tenant not found!")
|
223 |
+
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
|
224 |
+
|
225 |
+
return get_json_result(data=True)
|
226 |
+
except Exception as e:
|
227 |
+
return server_error_response(e)
|
228 |
+
|
229 |
+
|
230 |
@manager.route('/rename', methods=['POST'])
|
231 |
@login_required
|
232 |
@validate_request("doc_id", "name", "old_name")
|
|
|
284 |
if doc.parser_id.lower() == req["parser_id"].lower():
|
285 |
return get_json_result(data=True)
|
286 |
|
287 |
+
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": "", "run": 1})
|
288 |
if not e:
|
289 |
return get_data_error_result(retmsg="Document not found!")
|
290 |
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1)
|
api/db/__init__.py
CHANGED
@@ -59,3 +59,14 @@ class ChatStyle(StrEnum):
|
|
59 |
PRECISE = 'Precise'
|
60 |
EVENLY = 'Evenly'
|
61 |
CUSTOM = 'Custom'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
PRECISE = 'Precise'
|
60 |
EVENLY = 'Evenly'
|
61 |
CUSTOM = 'Custom'
|
62 |
+
|
63 |
+
|
64 |
+
class ParserType(StrEnum):
|
65 |
+
GENERAL = "general"
|
66 |
+
PRESENTATION = "presentation"
|
67 |
+
LAWS = "laws"
|
68 |
+
MANUAL = "manual"
|
69 |
+
PAPER = "paper"
|
70 |
+
RESUME = ""
|
71 |
+
BOOK = ""
|
72 |
+
QA = ""
|
api/db/db_models.py
CHANGED
@@ -496,15 +496,27 @@ class Document(DataBaseModel):
|
|
496 |
token_num = IntegerField(default=0)
|
497 |
chunk_num = IntegerField(default=0)
|
498 |
progress = FloatField(default=0)
|
499 |
-
progress_msg = CharField(max_length=
|
500 |
process_begin_at = DateTimeField(null=True)
|
501 |
process_duation = FloatField(default=0)
|
|
|
502 |
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1")
|
503 |
|
504 |
class Meta:
|
505 |
db_table = "document"
|
506 |
|
507 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
508 |
class Dialog(DataBaseModel):
|
509 |
id = CharField(max_length=32, primary_key=True)
|
510 |
tenant_id = CharField(max_length=32, null=False)
|
@@ -553,72 +565,6 @@ class Conversation(DataBaseModel):
|
|
553 |
|
554 |
|
555 |
"""
|
556 |
-
class Job(DataBaseModel):
|
557 |
-
# multi-party common configuration
|
558 |
-
f_user_id = CharField(max_length=25, null=True)
|
559 |
-
f_job_id = CharField(max_length=25, index=True)
|
560 |
-
f_name = CharField(max_length=500, null=True, default='')
|
561 |
-
f_description = TextField(null=True, default='')
|
562 |
-
f_tag = CharField(max_length=50, null=True, default='')
|
563 |
-
f_dsl = JSONField()
|
564 |
-
f_runtime_conf = JSONField()
|
565 |
-
f_runtime_conf_on_party = JSONField()
|
566 |
-
f_train_runtime_conf = JSONField(null=True)
|
567 |
-
f_roles = JSONField()
|
568 |
-
f_initiator_role = CharField(max_length=50)
|
569 |
-
f_initiator_party_id = CharField(max_length=50)
|
570 |
-
f_status = CharField(max_length=50)
|
571 |
-
f_status_code = IntegerField(null=True)
|
572 |
-
f_user = JSONField()
|
573 |
-
# this party configuration
|
574 |
-
f_role = CharField(max_length=50, index=True)
|
575 |
-
f_party_id = CharField(max_length=10, index=True)
|
576 |
-
f_is_initiator = BooleanField(null=True, default=False)
|
577 |
-
f_progress = IntegerField(null=True, default=0)
|
578 |
-
f_ready_signal = BooleanField(default=False)
|
579 |
-
f_ready_time = BigIntegerField(null=True)
|
580 |
-
f_cancel_signal = BooleanField(default=False)
|
581 |
-
f_cancel_time = BigIntegerField(null=True)
|
582 |
-
f_rerun_signal = BooleanField(default=False)
|
583 |
-
f_end_scheduling_updates = IntegerField(null=True, default=0)
|
584 |
-
|
585 |
-
f_engine_name = CharField(max_length=50, null=True)
|
586 |
-
f_engine_type = CharField(max_length=10, null=True)
|
587 |
-
f_cores = IntegerField(default=0)
|
588 |
-
f_memory = IntegerField(default=0) # MB
|
589 |
-
f_remaining_cores = IntegerField(default=0)
|
590 |
-
f_remaining_memory = IntegerField(default=0) # MB
|
591 |
-
f_resource_in_use = BooleanField(default=False)
|
592 |
-
f_apply_resource_time = BigIntegerField(null=True)
|
593 |
-
f_return_resource_time = BigIntegerField(null=True)
|
594 |
-
|
595 |
-
f_inheritance_info = JSONField(null=True)
|
596 |
-
f_inheritance_status = CharField(max_length=50, null=True)
|
597 |
-
|
598 |
-
f_start_time = BigIntegerField(null=True)
|
599 |
-
f_start_date = DateTimeField(null=True)
|
600 |
-
f_end_time = BigIntegerField(null=True)
|
601 |
-
f_end_date = DateTimeField(null=True)
|
602 |
-
f_elapsed = BigIntegerField(null=True)
|
603 |
-
|
604 |
-
class Meta:
|
605 |
-
db_table = "t_job"
|
606 |
-
primary_key = CompositeKey('f_job_id', 'f_role', 'f_party_id')
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
class PipelineComponentMeta(DataBaseModel):
|
611 |
-
f_model_id = CharField(max_length=100, index=True)
|
612 |
-
f_model_version = CharField(max_length=100, index=True)
|
613 |
-
f_role = CharField(max_length=50, index=True)
|
614 |
-
f_party_id = CharField(max_length=10, index=True)
|
615 |
-
f_component_name = CharField(max_length=100, index=True)
|
616 |
-
f_component_module_name = CharField(max_length=100)
|
617 |
-
f_model_alias = CharField(max_length=100, index=True)
|
618 |
-
f_model_proto_index = JSONField(null=True)
|
619 |
-
f_run_parameters = JSONField(null=True)
|
620 |
-
f_archive_sha256 = CharField(max_length=100, null=True)
|
621 |
-
f_archive_from_ip = CharField(max_length=100, null=True)
|
622 |
|
623 |
class Meta:
|
624 |
db_table = 't_pipeline_component_meta'
|
|
|
496 |
token_num = IntegerField(default=0)
|
497 |
chunk_num = IntegerField(default=0)
|
498 |
progress = FloatField(default=0)
|
499 |
+
progress_msg = CharField(max_length=512, null=True, help_text="process message", default="")
|
500 |
process_begin_at = DateTimeField(null=True)
|
501 |
process_duation = FloatField(default=0)
|
502 |
+
run = CharField(max_length=1, null=True, help_text="start to run processing or cancel.(1: run it; 2: cancel)", default="0")
|
503 |
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1")
|
504 |
|
505 |
class Meta:
|
506 |
db_table = "document"
|
507 |
|
508 |
|
509 |
+
class Task(DataBaseModel):
|
510 |
+
id = CharField(max_length=32, primary_key=True)
|
511 |
+
doc_id = CharField(max_length=32, null=False, index=True)
|
512 |
+
from_page = IntegerField(default=0)
|
513 |
+
to_page = IntegerField(default=-1)
|
514 |
+
begin_at = DateTimeField(null=True)
|
515 |
+
process_duation = FloatField(default=0)
|
516 |
+
progress = FloatField(default=0)
|
517 |
+
progress_msg = CharField(max_length=255, null=True, help_text="process message", default="")
|
518 |
+
|
519 |
+
|
520 |
class Dialog(DataBaseModel):
|
521 |
id = CharField(max_length=32, primary_key=True)
|
522 |
tenant_id = CharField(max_length=32, null=False)
|
|
|
565 |
|
566 |
|
567 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
568 |
|
569 |
class Meta:
|
570 |
db_table = 't_pipeline_component_meta'
|
api/db/db_utils.py
CHANGED
@@ -32,19 +32,19 @@ LOGGER = getLogger()
|
|
32 |
def bulk_insert_into_db(model, data_source, replace_on_conflict=False):
|
33 |
DB.create_tables([model])
|
34 |
|
35 |
-
current_time = current_timestamp()
|
36 |
-
current_date = timestamp_to_date(current_time)
|
37 |
|
38 |
for data in data_source:
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
data['
|
|
|
|
|
44 |
|
45 |
-
preserve = tuple(data_source[0].keys() - {'
|
46 |
|
47 |
-
batch_size =
|
48 |
|
49 |
for i in range(0, len(data_source), batch_size):
|
50 |
with DB.atomic():
|
|
|
32 |
def bulk_insert_into_db(model, data_source, replace_on_conflict=False):
|
33 |
DB.create_tables([model])
|
34 |
|
|
|
|
|
35 |
|
36 |
for data in data_source:
|
37 |
+
current_time = current_timestamp()
|
38 |
+
current_date = timestamp_to_date(current_time)
|
39 |
+
if 'create_time' not in data:
|
40 |
+
data['create_time'] = current_time
|
41 |
+
data['create_date'] = timestamp_to_date(data['create_time'])
|
42 |
+
data['update_time'] = current_time
|
43 |
+
data['update_date'] = current_date
|
44 |
|
45 |
+
preserve = tuple(data_source[0].keys() - {'create_time', 'create_date'})
|
46 |
|
47 |
+
batch_size = 1000
|
48 |
|
49 |
for i in range(0, len(data_source), batch_size):
|
50 |
with DB.atomic():
|
api/db/services/common_service.py
CHANGED
@@ -70,6 +70,7 @@ class CommonService:
|
|
70 |
@DB.connection_context()
|
71 |
def insert_many(cls, data_list, batch_size=100):
|
72 |
with DB.atomic():
|
|
|
73 |
for i in range(0, len(data_list), batch_size):
|
74 |
cls.model.insert_many(data_list[i:i + batch_size]).execute()
|
75 |
|
|
|
70 |
@DB.connection_context()
|
71 |
def insert_many(cls, data_list, batch_size=100):
|
72 |
with DB.atomic():
|
73 |
+
for d in data_list: d["create_time"] = datetime_format(datetime.now())
|
74 |
for i in range(0, len(data_list), batch_size):
|
75 |
cls.model.insert_many(data_list[i:i + batch_size]).execute()
|
76 |
|
api/db/services/document_service.py
CHANGED
@@ -61,8 +61,8 @@ class DocumentService(CommonService):
|
|
61 |
|
62 |
@classmethod
|
63 |
@DB.connection_context()
|
64 |
-
def get_newly_uploaded(cls, tm, mod, comm, items_per_page=64):
|
65 |
-
fields = [cls.model.id, cls.model.kb_id, cls.model.parser_id, cls.model.name, cls.model.location, cls.model.size, Knowledgebase.tenant_id, Tenant.embd_id, Tenant.img2txt_id, cls.model.update_time]
|
66 |
docs = cls.model.select(*fields) \
|
67 |
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \
|
68 |
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\
|
@@ -76,6 +76,18 @@ class DocumentService(CommonService):
|
|
76 |
.paginate(1, items_per_page)
|
77 |
return list(docs.dicts())
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
@classmethod
|
80 |
@DB.connection_context()
|
81 |
def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
|
|
|
61 |
|
62 |
@classmethod
|
63 |
@DB.connection_context()
|
64 |
+
def get_newly_uploaded(cls, tm, mod=0, comm=1, items_per_page=64):
|
65 |
+
fields = [cls.model.id, cls.model.kb_id, cls.model.parser_id, cls.model.name, cls.model.type, cls.model.location, cls.model.size, Knowledgebase.tenant_id, Tenant.embd_id, Tenant.img2txt_id, Tenant.asr_id, cls.model.update_time]
|
66 |
docs = cls.model.select(*fields) \
|
67 |
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \
|
68 |
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\
|
|
|
76 |
.paginate(1, items_per_page)
|
77 |
return list(docs.dicts())
|
78 |
|
79 |
+
@classmethod
|
80 |
+
@DB.connection_context()
|
81 |
+
def get_unfinished_docs(cls):
|
82 |
+
fields = [cls.model.id, cls.model.process_begin_at]
|
83 |
+
docs = cls.model.select(*fields) \
|
84 |
+
.where(
|
85 |
+
cls.model.status == StatusEnum.VALID.value,
|
86 |
+
~(cls.model.type == FileType.VIRTUAL.value),
|
87 |
+
cls.model.progress < 1,
|
88 |
+
cls.model.progress > 0)
|
89 |
+
return list(docs.dicts())
|
90 |
+
|
91 |
@classmethod
|
92 |
@DB.connection_context()
|
93 |
def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
|
api/db/services/task_service.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
from peewee import Expression
|
17 |
+
from api.db.db_models import DB
|
18 |
+
from api.db import StatusEnum, FileType
|
19 |
+
from api.db.db_models import Task, Document, Knowledgebase, Tenant
|
20 |
+
from api.db.services.common_service import CommonService
|
21 |
+
|
22 |
+
|
23 |
+
class TaskService(CommonService):
|
24 |
+
model = Task
|
25 |
+
|
26 |
+
@classmethod
|
27 |
+
@DB.connection_context()
|
28 |
+
def get_tasks(cls, tm, mod=0, comm=1, items_per_page=64):
|
29 |
+
fields = [cls.model.id, cls.model.doc_id, cls.model.from_page,cls.model.to_page, Document.kb_id, Document.parser_id, Document.name, Document.type, Document.location, Document.size, Knowledgebase.tenant_id, Tenant.embd_id, Tenant.img2txt_id, Tenant.asr_id, cls.model.update_time]
|
30 |
+
docs = cls.model.select(*fields) \
|
31 |
+
.join(Document, on=(cls.model.doc_id == Document.id)) \
|
32 |
+
.join(Knowledgebase, on=(Document.kb_id == Knowledgebase.id)) \
|
33 |
+
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\
|
34 |
+
.where(
|
35 |
+
Document.status == StatusEnum.VALID.value,
|
36 |
+
~(Document.type == FileType.VIRTUAL.value),
|
37 |
+
cls.model.progress == 0,
|
38 |
+
cls.model.update_time >= tm,
|
39 |
+
(Expression(cls.model.create_time, "%%", comm) == mod))\
|
40 |
+
.order_by(cls.model.update_time.asc())\
|
41 |
+
.paginate(1, items_per_page)
|
42 |
+
return list(docs.dicts())
|
43 |
+
|
44 |
+
|
45 |
+
@classmethod
|
46 |
+
@DB.connection_context()
|
47 |
+
def do_cancel(cls, id):
|
48 |
+
try:
|
49 |
+
cls.model.get_by_id(id)
|
50 |
+
return False
|
51 |
+
except Exception as e:
|
52 |
+
pass
|
53 |
+
return True
|
rag/app/__init__.py
CHANGED
@@ -67,4 +67,6 @@ def tokenize(d, t, eng):
|
|
67 |
d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(t)])
|
68 |
else:
|
69 |
d["content_ltks"] = huqie.qie(t)
|
70 |
-
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
|
|
|
|
|
67 |
d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(t)])
|
68 |
else:
|
69 |
d["content_ltks"] = huqie.qie(t)
|
70 |
+
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
71 |
+
|
72 |
+
|
rag/app/laws.py
CHANGED
@@ -32,14 +32,12 @@ class Pdf(HuParser):
|
|
32 |
zoomin,
|
33 |
from_page,
|
34 |
to_page)
|
35 |
-
callback__(
|
36 |
-
"Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback)
|
37 |
|
38 |
from timeit import default_timer as timer
|
39 |
start = timer()
|
40 |
self._layouts_paddle(zoomin)
|
41 |
-
callback__(
|
42 |
-
"Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback)
|
43 |
print("paddle layouts:", timer()-start)
|
44 |
bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
|
45 |
# is it English
|
@@ -77,8 +75,7 @@ class Pdf(HuParser):
|
|
77 |
b["x1"] = max(b["x1"], b_["x1"])
|
78 |
bxs.pop(i + 1)
|
79 |
|
80 |
-
callback__(
|
81 |
-
"Page {}~{}: Text extraction finished".format(from_page, min(to_page, self.total_page)), callback)
|
82 |
|
83 |
return [b["text"] + self._line_tag(b, zoomin) for b in bxs]
|
84 |
|
@@ -92,14 +89,17 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
|
92 |
pdf_parser = None
|
93 |
sections = []
|
94 |
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
|
|
95 |
for txt in Docx()(filename, binary):
|
96 |
sections.append(txt)
|
97 |
-
|
|
|
98 |
pdf_parser = Pdf()
|
99 |
for txt in pdf_parser(filename if not binary else binary,
|
100 |
from_page=from_page, to_page=to_page, callback=callback):
|
101 |
sections.append(txt)
|
102 |
-
|
|
|
103 |
txt = ""
|
104 |
if binary:txt = binary.decode("utf-8")
|
105 |
else:
|
@@ -110,6 +110,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
|
110 |
txt += l
|
111 |
sections = txt.split("\n")
|
112 |
sections = [l for l in sections if l]
|
|
|
|
|
113 |
|
114 |
# is it English
|
115 |
eng = is_english(sections)
|
|
|
32 |
zoomin,
|
33 |
from_page,
|
34 |
to_page)
|
35 |
+
callback__(0.1, "OCR finished", callback)
|
|
|
36 |
|
37 |
from timeit import default_timer as timer
|
38 |
start = timer()
|
39 |
self._layouts_paddle(zoomin)
|
40 |
+
callback__(0.77, "Layout analysis finished", callback)
|
|
|
41 |
print("paddle layouts:", timer()-start)
|
42 |
bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
|
43 |
# is it English
|
|
|
75 |
b["x1"] = max(b["x1"], b_["x1"])
|
76 |
bxs.pop(i + 1)
|
77 |
|
78 |
+
callback__(0.8, "Text extraction finished", callback)
|
|
|
79 |
|
80 |
return [b["text"] + self._line_tag(b, zoomin) for b in bxs]
|
81 |
|
|
|
89 |
pdf_parser = None
|
90 |
sections = []
|
91 |
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
92 |
+
callback__(0.1, "Start to parse.", callback)
|
93 |
for txt in Docx()(filename, binary):
|
94 |
sections.append(txt)
|
95 |
+
callback__(0.8, "Finish parsing.", callback)
|
96 |
+
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
97 |
pdf_parser = Pdf()
|
98 |
for txt in pdf_parser(filename if not binary else binary,
|
99 |
from_page=from_page, to_page=to_page, callback=callback):
|
100 |
sections.append(txt)
|
101 |
+
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
102 |
+
callback__(0.1, "Start to parse.", callback)
|
103 |
txt = ""
|
104 |
if binary:txt = binary.decode("utf-8")
|
105 |
else:
|
|
|
110 |
txt += l
|
111 |
sections = txt.split("\n")
|
112 |
sections = [l for l in sections if l]
|
113 |
+
callback__(0.8, "Finish parsing.", callback)
|
114 |
+
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
115 |
|
116 |
# is it English
|
117 |
eng = is_english(sections)
|
rag/app/manual.py
CHANGED
@@ -1,12 +1,8 @@
|
|
1 |
import copy
|
2 |
import re
|
3 |
-
from
|
4 |
-
from rag.
|
5 |
-
from rag.nlp import huqie, stemmer
|
6 |
-
from rag.parser.docx_parser import HuDocxParser
|
7 |
from rag.parser.pdf_parser import HuParser
|
8 |
-
from nltk.tokenize import word_tokenize
|
9 |
-
import numpy as np
|
10 |
from rag.utils import num_tokens_from_string
|
11 |
|
12 |
|
@@ -18,24 +14,19 @@ class Pdf(HuParser):
|
|
18 |
zoomin,
|
19 |
from_page,
|
20 |
to_page)
|
21 |
-
callback__(
|
22 |
-
"Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback)
|
23 |
|
24 |
from timeit import default_timer as timer
|
25 |
start = timer()
|
26 |
self._layouts_paddle(zoomin)
|
27 |
-
callback__(
|
28 |
-
"Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback)
|
29 |
print("paddle layouts:", timer() - start)
|
30 |
self._table_transformer_job(zoomin)
|
31 |
-
callback__(
|
32 |
-
"Page {}~{}: Table analysis finished".format(from_page, min(to_page, self.total_page)), callback)
|
33 |
self._text_merge()
|
34 |
-
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
35 |
self._concat_downward(concat_between_pages=False)
|
36 |
self._filter_forpages()
|
37 |
-
callback__(
|
38 |
-
"Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback)
|
39 |
tbls = self._extract_table_figure(True, zoomin, False)
|
40 |
|
41 |
# clean mess
|
@@ -71,6 +62,7 @@ class Pdf(HuParser):
|
|
71 |
b_["top"] = b["top"]
|
72 |
self.boxes.pop(i)
|
73 |
|
|
|
74 |
for b in self.boxes: print(b["text"], b.get("layoutno"))
|
75 |
|
76 |
print(tbls)
|
@@ -85,6 +77,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
|
85 |
pdf_parser = Pdf()
|
86 |
cks, tbls = pdf_parser(filename if not binary else binary,
|
87 |
from_page=from_page, to_page=to_page, callback=callback)
|
|
|
88 |
doc = {
|
89 |
"docnm_kwd": filename
|
90 |
}
|
|
|
1 |
import copy
|
2 |
import re
|
3 |
+
from rag.app import callback__, tokenize
|
4 |
+
from rag.nlp import huqie
|
|
|
|
|
5 |
from rag.parser.pdf_parser import HuParser
|
|
|
|
|
6 |
from rag.utils import num_tokens_from_string
|
7 |
|
8 |
|
|
|
14 |
zoomin,
|
15 |
from_page,
|
16 |
to_page)
|
17 |
+
callback__(0.2, "OCR finished.", callback)
|
|
|
18 |
|
19 |
from timeit import default_timer as timer
|
20 |
start = timer()
|
21 |
self._layouts_paddle(zoomin)
|
22 |
+
callback__(0.5, "Layout analysis finished.", callback)
|
|
|
23 |
print("paddle layouts:", timer() - start)
|
24 |
self._table_transformer_job(zoomin)
|
25 |
+
callback__(0.7, "Table analysis finished.", callback)
|
|
|
26 |
self._text_merge()
|
|
|
27 |
self._concat_downward(concat_between_pages=False)
|
28 |
self._filter_forpages()
|
29 |
+
callback__(0.77, "Text merging finished", callback)
|
|
|
30 |
tbls = self._extract_table_figure(True, zoomin, False)
|
31 |
|
32 |
# clean mess
|
|
|
62 |
b_["top"] = b["top"]
|
63 |
self.boxes.pop(i)
|
64 |
|
65 |
+
callback__(0.8, "Parsing finished", callback)
|
66 |
for b in self.boxes: print(b["text"], b.get("layoutno"))
|
67 |
|
68 |
print(tbls)
|
|
|
77 |
pdf_parser = Pdf()
|
78 |
cks, tbls = pdf_parser(filename if not binary else binary,
|
79 |
from_page=from_page, to_page=to_page, callback=callback)
|
80 |
+
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
81 |
doc = {
|
82 |
"docnm_kwd": filename
|
83 |
}
|
rag/app/paper.py
CHANGED
@@ -18,24 +18,20 @@ class Pdf(HuParser):
|
|
18 |
zoomin,
|
19 |
from_page,
|
20 |
to_page)
|
21 |
-
callback__(
|
22 |
-
"Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback)
|
23 |
|
24 |
from timeit import default_timer as timer
|
25 |
start = timer()
|
26 |
self._layouts_paddle(zoomin)
|
27 |
-
callback__(
|
28 |
-
"Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback)
|
29 |
print("paddle layouts:", timer() - start)
|
30 |
self._table_transformer_job(zoomin)
|
31 |
-
callback__(
|
32 |
-
"Page {}~{}: Table analysis finished".format(from_page, min(to_page, self.total_page)), callback)
|
33 |
self._text_merge()
|
34 |
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
35 |
self._concat_downward(concat_between_pages=False)
|
36 |
self._filter_forpages()
|
37 |
-
callback__(
|
38 |
-
"Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback)
|
39 |
tbls = self._extract_table_figure(True, zoomin, False)
|
40 |
|
41 |
# clean mess
|
@@ -105,6 +101,7 @@ class Pdf(HuParser):
|
|
105 |
break
|
106 |
if not abstr: i = 0
|
107 |
|
|
|
108 |
for b in self.boxes: print(b["text"], b.get("layoutno"))
|
109 |
print(tbls)
|
110 |
|
@@ -126,6 +123,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
|
126 |
pdf_parser = Pdf()
|
127 |
paper = pdf_parser(filename if not binary else binary,
|
128 |
from_page=from_page, to_page=to_page, callback=callback)
|
|
|
129 |
doc = {
|
130 |
"docnm_kwd": paper["title"] if paper["title"] else filename,
|
131 |
"authors_tks": paper["authors"]
|
|
|
18 |
zoomin,
|
19 |
from_page,
|
20 |
to_page)
|
21 |
+
callback__(0.2, "OCR finished.", callback)
|
|
|
22 |
|
23 |
from timeit import default_timer as timer
|
24 |
start = timer()
|
25 |
self._layouts_paddle(zoomin)
|
26 |
+
callback__(0.47, "Layout analysis finished", callback)
|
|
|
27 |
print("paddle layouts:", timer() - start)
|
28 |
self._table_transformer_job(zoomin)
|
29 |
+
callback__(0.68, "Table analysis finished", callback)
|
|
|
30 |
self._text_merge()
|
31 |
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
32 |
self._concat_downward(concat_between_pages=False)
|
33 |
self._filter_forpages()
|
34 |
+
callback__(0.75, "Text merging finished.", callback)
|
|
|
35 |
tbls = self._extract_table_figure(True, zoomin, False)
|
36 |
|
37 |
# clean mess
|
|
|
101 |
break
|
102 |
if not abstr: i = 0
|
103 |
|
104 |
+
callback__(0.8, "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback)
|
105 |
for b in self.boxes: print(b["text"], b.get("layoutno"))
|
106 |
print(tbls)
|
107 |
|
|
|
123 |
pdf_parser = Pdf()
|
124 |
paper = pdf_parser(filename if not binary else binary,
|
125 |
from_page=from_page, to_page=to_page, callback=callback)
|
126 |
+
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
127 |
doc = {
|
128 |
"docnm_kwd": paper["title"] if paper["title"] else filename,
|
129 |
"authors_tks": paper["authors"]
|
rag/app/presentation.py
CHANGED
@@ -42,10 +42,8 @@ class Ppt(object):
|
|
42 |
txt = self.__extract(shape)
|
43 |
if txt: texts.append(txt)
|
44 |
txts.append("\n".join(texts))
|
45 |
-
callback__((i+1)/self.total_page/2, "", callback)
|
46 |
|
47 |
-
callback__(
|
48 |
-
"Page {}~{}: Text extraction finished".format(from_page, min(to_page, self.total_page)), callback)
|
49 |
import aspose.slides as slides
|
50 |
import aspose.pydrawing as drawing
|
51 |
imgs = []
|
@@ -55,8 +53,7 @@ class Ppt(object):
|
|
55 |
slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg)
|
56 |
imgs.append(buffered.getvalue())
|
57 |
assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts))
|
58 |
-
callback__(
|
59 |
-
"Page {}~{}: Image extraction finished".format(from_page, min(to_page, self.total_page)), callback)
|
60 |
self.is_english = is_english(txts)
|
61 |
return [(txts[i], imgs[i]) for i in range(len(txts))]
|
62 |
|
@@ -73,7 +70,7 @@ class Pdf(HuParser):
|
|
73 |
|
74 |
def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None):
|
75 |
self.__images__(filename if not binary else binary, zoomin, from_page, to_page)
|
76 |
-
callback__(
|
77 |
assert len(self.boxes) == len(self.page_images), "{} vs. {}".format(len(self.boxes), len(self.page_images))
|
78 |
res = []
|
79 |
#################### More precisely ###################
|
@@ -92,6 +89,7 @@ class Pdf(HuParser):
|
|
92 |
for i in range(len(self.boxes)):
|
93 |
lines = "\n".join([b["text"] for b in self.boxes[i] if not self.__garbage(b["text"])])
|
94 |
res.append((lines, self.page_images[i]))
|
|
|
95 |
return res
|
96 |
|
97 |
|
@@ -104,13 +102,13 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
|
104 |
res = []
|
105 |
if re.search(r"\.pptx?$", filename, re.IGNORECASE):
|
106 |
ppt_parser = Ppt()
|
107 |
-
for txt,img in ppt_parser(filename if not binary else binary, from_page,
|
108 |
d = copy.deepcopy(doc)
|
109 |
d["image"] = img
|
110 |
tokenize(d, txt, ppt_parser.is_english)
|
111 |
res.append(d)
|
112 |
return res
|
113 |
-
|
114 |
pdf_parser = Pdf()
|
115 |
for txt,img in pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback):
|
116 |
d = copy.deepcopy(doc)
|
@@ -118,7 +116,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
|
118 |
tokenize(d, txt, pdf_parser.is_english)
|
119 |
res.append(d)
|
120 |
return res
|
121 |
-
|
|
|
122 |
|
123 |
|
124 |
if __name__== "__main__":
|
|
|
42 |
txt = self.__extract(shape)
|
43 |
if txt: texts.append(txt)
|
44 |
txts.append("\n".join(texts))
|
|
|
45 |
|
46 |
+
callback__(0.5, "Text extraction finished.", callback)
|
|
|
47 |
import aspose.slides as slides
|
48 |
import aspose.pydrawing as drawing
|
49 |
imgs = []
|
|
|
53 |
slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg)
|
54 |
imgs.append(buffered.getvalue())
|
55 |
assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts))
|
56 |
+
callback__(0.9, "Image extraction finished", callback)
|
|
|
57 |
self.is_english = is_english(txts)
|
58 |
return [(txts[i], imgs[i]) for i in range(len(txts))]
|
59 |
|
|
|
70 |
|
71 |
def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None):
|
72 |
self.__images__(filename if not binary else binary, zoomin, from_page, to_page)
|
73 |
+
callback__(0.8, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback)
|
74 |
assert len(self.boxes) == len(self.page_images), "{} vs. {}".format(len(self.boxes), len(self.page_images))
|
75 |
res = []
|
76 |
#################### More precisely ###################
|
|
|
89 |
for i in range(len(self.boxes)):
|
90 |
lines = "\n".join([b["text"] for b in self.boxes[i] if not self.__garbage(b["text"])])
|
91 |
res.append((lines, self.page_images[i]))
|
92 |
+
callback__(0.9, "Page {}~{}: Parsing finished".format(from_page, min(to_page, self.total_page)), callback)
|
93 |
return res
|
94 |
|
95 |
|
|
|
102 |
res = []
|
103 |
if re.search(r"\.pptx?$", filename, re.IGNORECASE):
|
104 |
ppt_parser = Ppt()
|
105 |
+
for txt,img in ppt_parser(filename if not binary else binary, from_page, 1000000, callback):
|
106 |
d = copy.deepcopy(doc)
|
107 |
d["image"] = img
|
108 |
tokenize(d, txt, ppt_parser.is_english)
|
109 |
res.append(d)
|
110 |
return res
|
111 |
+
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
112 |
pdf_parser = Pdf()
|
113 |
for txt,img in pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback):
|
114 |
d = copy.deepcopy(doc)
|
|
|
116 |
tokenize(d, txt, pdf_parser.is_english)
|
117 |
res.append(d)
|
118 |
return res
|
119 |
+
|
120 |
+
raise NotImplementedError("file type not supported yet(pptx, pdf supported)")
|
121 |
|
122 |
|
123 |
if __name__== "__main__":
|
rag/parser/pdf_parser.py
CHANGED
@@ -1559,6 +1559,15 @@ class HuParser:
|
|
1559 |
|
1560 |
return "\n\n".join(res)
|
1561 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1562 |
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299):
|
1563 |
self.lefted_chars = []
|
1564 |
self.mean_height = []
|
|
|
1559 |
|
1560 |
return "\n\n".join(res)
|
1561 |
|
1562 |
+
@staticmethod
|
1563 |
+
def total_page_number(fnm, binary=None):
|
1564 |
+
try:
|
1565 |
+
pdf = pdfplumber.open(fnm) if not binary else pdfplumber.open(BytesIO(binary))
|
1566 |
+
return len(pdf.pages)
|
1567 |
+
except Exception as e:
|
1568 |
+
pdf = fitz.open(fnm) if not binary else fitz.open(stream=fnm, filetype="pdf")
|
1569 |
+
return len(pdf)
|
1570 |
+
|
1571 |
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299):
|
1572 |
self.lefted_chars = []
|
1573 |
self.mean_height = []
|
rag/svr/task_broker.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
import time
|
19 |
+
import random
|
20 |
+
from timeit import default_timer as timer
|
21 |
+
from api.db.db_models import Task
|
22 |
+
from api.db.db_utils import bulk_insert_into_db
|
23 |
+
from api.db.services.task_service import TaskService
|
24 |
+
from rag.parser.pdf_parser import HuParser
|
25 |
+
from rag.settings import cron_logger
|
26 |
+
from rag.utils import MINIO
|
27 |
+
from rag.utils import findMaxTm
|
28 |
+
import pandas as pd
|
29 |
+
from api.db import FileType
|
30 |
+
from api.db.services.document_service import DocumentService
|
31 |
+
from api.settings import database_logger
|
32 |
+
from api.utils import get_format_time, get_uuid
|
33 |
+
from api.utils.file_utils import get_project_base_directory
|
34 |
+
|
35 |
+
|
36 |
+
def collect(tm):
|
37 |
+
docs = DocumentService.get_newly_uploaded(tm)
|
38 |
+
if len(docs) == 0:
|
39 |
+
return pd.DataFrame()
|
40 |
+
docs = pd.DataFrame(docs)
|
41 |
+
mtm = docs["update_time"].max()
|
42 |
+
cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm))
|
43 |
+
return docs
|
44 |
+
|
45 |
+
|
46 |
+
def set_dispatching(docid):
|
47 |
+
try:
|
48 |
+
DocumentService.update_by_id(
|
49 |
+
docid, {"progress": random.randint(0, 3) / 100.,
|
50 |
+
"progress_msg": "Task dispatched...",
|
51 |
+
"process_begin_at": get_format_time()
|
52 |
+
})
|
53 |
+
except Exception as e:
|
54 |
+
cron_logger.error("set_dispatching:({}), {}".format(docid, str(e)))
|
55 |
+
|
56 |
+
|
57 |
+
def dispatch():
|
58 |
+
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"broker.tm")
|
59 |
+
tm = findMaxTm(tm_fnm)
|
60 |
+
rows = collect(tm)
|
61 |
+
if len(rows) == 0:
|
62 |
+
return
|
63 |
+
|
64 |
+
tmf = open(tm_fnm, "a+")
|
65 |
+
for _, r in rows.iterrows():
|
66 |
+
try:
|
67 |
+
tsks = TaskService.query(doc_id=r["id"])
|
68 |
+
if tsks:
|
69 |
+
for t in tsks:
|
70 |
+
TaskService.delete_by_id(t.id)
|
71 |
+
except Exception as e:
|
72 |
+
cron_logger.error("delete task exception:" + str(e))
|
73 |
+
|
74 |
+
def new_task():
|
75 |
+
nonlocal r
|
76 |
+
return {
|
77 |
+
"id": get_uuid(),
|
78 |
+
"doc_id": r["id"]
|
79 |
+
}
|
80 |
+
|
81 |
+
tsks = []
|
82 |
+
if r["type"] == FileType.PDF.value:
|
83 |
+
pages = HuParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
84 |
+
for p in range(0, pages, 10):
|
85 |
+
task = new_task()
|
86 |
+
task["from_page"] = p
|
87 |
+
task["to_page"] = min(p + 10, pages)
|
88 |
+
tsks.append(task)
|
89 |
+
else:
|
90 |
+
tsks.append(new_task())
|
91 |
+
print(tsks)
|
92 |
+
bulk_insert_into_db(Task, tsks, True)
|
93 |
+
set_dispatching(r["id"])
|
94 |
+
tmf.write(str(r["update_time"]) + "\n")
|
95 |
+
tmf.close()
|
96 |
+
|
97 |
+
|
98 |
+
def update_progress():
|
99 |
+
docs = DocumentService.get_unfinished_docs()
|
100 |
+
for d in docs:
|
101 |
+
try:
|
102 |
+
tsks = TaskService.query(doc_id=d["id"], order_by=Task.create_time)
|
103 |
+
if not tsks:continue
|
104 |
+
msg = []
|
105 |
+
prg = 0
|
106 |
+
finished = True
|
107 |
+
bad = 0
|
108 |
+
for t in tsks:
|
109 |
+
if 0 <= t.progress < 1: finished = False
|
110 |
+
prg += t.progress if t.progress >= 0 else 0
|
111 |
+
msg.append(t.progress_msg)
|
112 |
+
if t.progress == -1: bad += 1
|
113 |
+
prg /= len(tsks)
|
114 |
+
if finished and bad: prg = -1
|
115 |
+
msg = "\n".join(msg)
|
116 |
+
DocumentService.update_by_id(d["id"], {"progress": prg, "progress_msg": msg, "process_duation": timer()-d["process_begin_at"].timestamp()})
|
117 |
+
except Exception as e:
|
118 |
+
cron_logger.error("fetch task exception:" + str(e))
|
119 |
+
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
peewee_logger = logging.getLogger('peewee')
|
123 |
+
peewee_logger.propagate = False
|
124 |
+
peewee_logger.addHandler(database_logger.handlers[0])
|
125 |
+
peewee_logger.setLevel(database_logger.level)
|
126 |
+
|
127 |
+
while True:
|
128 |
+
dispatch()
|
129 |
+
time.sleep(3)
|
130 |
+
update_progress()
|
rag/svr/{parse_user_docs.py → task_executor.py}
RENAMED
@@ -19,49 +19,59 @@ import logging
|
|
19 |
import os
|
20 |
import hashlib
|
21 |
import copy
|
22 |
-
import time
|
23 |
-
import random
|
24 |
import re
|
|
|
|
|
25 |
from timeit import default_timer as timer
|
26 |
|
|
|
27 |
from rag.llm import EmbeddingModel, CvModel
|
28 |
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
|
29 |
from rag.utils import ELASTICSEARCH
|
30 |
from rag.utils import MINIO
|
31 |
from rag.utils import rmSpace, findMaxTm
|
32 |
|
33 |
-
from rag.nlp import
|
34 |
from io import BytesIO
|
35 |
import pandas as pd
|
36 |
-
|
37 |
-
from
|
38 |
-
|
39 |
-
|
40 |
-
DocxParser,
|
41 |
-
ExcelParser
|
42 |
-
)
|
43 |
-
from rag.nlp.huchunk import (
|
44 |
-
PdfChunker,
|
45 |
-
DocxChunker,
|
46 |
-
ExcelChunker,
|
47 |
-
PptChunker,
|
48 |
-
TextChunker
|
49 |
-
)
|
50 |
-
from api.db import LLMType
|
51 |
from api.db.services.document_service import DocumentService
|
52 |
-
from api.db.services.llm_service import
|
53 |
from api.settings import database_logger
|
54 |
-
from api.utils import get_format_time
|
55 |
from api.utils.file_utils import get_project_base_directory
|
56 |
|
57 |
BATCH_SIZE = 64
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|
|
|
|
65 |
def chuck_doc(name, binary, tenant_id, cvmdl=None):
|
66 |
suff = os.path.split(name)[-1].lower().split(".")[-1]
|
67 |
if suff.find("pdf") >= 0:
|
@@ -81,27 +91,17 @@ def chuck_doc(name, binary, tenant_id, cvmdl=None):
|
|
81 |
return field
|
82 |
|
83 |
return TextChunker()(binary)
|
|
|
84 |
|
85 |
|
86 |
def collect(comm, mod, tm):
|
87 |
-
|
88 |
-
if len(
|
89 |
return pd.DataFrame()
|
90 |
-
|
91 |
-
mtm =
|
92 |
-
cron_logger.info("TOTAL:{}, To:{}".format(len(
|
93 |
-
return
|
94 |
-
|
95 |
-
|
96 |
-
def set_progress(docid, prog, msg="Processing...", begin=False):
|
97 |
-
d = {"progress": prog, "progress_msg": msg}
|
98 |
-
if begin:
|
99 |
-
d["process_begin_at"] = get_format_time()
|
100 |
-
try:
|
101 |
-
DocumentService.update_by_id(
|
102 |
-
docid, {"progress": prog, "progress_msg": msg})
|
103 |
-
except Exception as e:
|
104 |
-
cron_logger.error("set_progress:({}), {}".format(docid, str(e)))
|
105 |
|
106 |
|
107 |
def build(row, cvmdl):
|
@@ -110,97 +110,50 @@ def build(row, cvmdl):
|
|
110 |
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
|
111 |
return []
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
# ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
|
116 |
-
# scripts="""
|
117 |
-
# if(!ctx._source.kb_id.contains('%s'))
|
118 |
-
# ctx._source.kb_id.add('%s');
|
119 |
-
# """ % (str(row["kb_id"]), str(row["kb_id"])),
|
120 |
-
# idxnm=search.index_name(row["tenant_id"])
|
121 |
-
# )
|
122 |
-
# set_progress(row["id"], 1, "Done")
|
123 |
-
# return []
|
124 |
-
|
125 |
-
random.seed(time.time())
|
126 |
-
set_progress(row["id"], random.randint(0, 20) /
|
127 |
-
100., "Finished preparing! Start to slice file!", True)
|
128 |
try:
|
129 |
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
130 |
-
|
|
|
131 |
except Exception as e:
|
132 |
if re.search("(No such file|not found)", str(e)):
|
133 |
-
|
134 |
-
row["id"], -1, "Can not find file <%s>" %
|
135 |
-
row["doc_name"])
|
136 |
else:
|
137 |
-
|
138 |
-
row["id"], -1, f"Internal server error: %s" %
|
139 |
-
str(e).replace(
|
140 |
-
"'", ""))
|
141 |
|
142 |
cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
|
143 |
|
144 |
return []
|
145 |
|
146 |
-
|
147 |
-
set_progress(
|
148 |
-
row["id"],
|
149 |
-
1,
|
150 |
-
"Nothing added! Mostly, file type unsupported yet.")
|
151 |
-
return []
|
152 |
-
|
153 |
-
set_progress(row["id"], random.randint(20, 60) / 100.,
|
154 |
-
"Finished slicing files. Start to embedding the content.")
|
155 |
|
|
|
156 |
doc = {
|
157 |
-
"doc_id": row["
|
158 |
-
"kb_id": [str(row["kb_id"])]
|
159 |
-
"docnm_kwd": os.path.split(row["location"])[-1],
|
160 |
-
"title_tks": huqie.qie(row["name"])
|
161 |
}
|
162 |
-
|
163 |
-
output_buffer = BytesIO()
|
164 |
-
docs = []
|
165 |
-
for txt, img in obj.text_chunks:
|
166 |
d = copy.deepcopy(doc)
|
|
|
167 |
md5 = hashlib.md5()
|
168 |
-
md5.update((
|
169 |
d["_id"] = md5.hexdigest()
|
170 |
-
d["
|
171 |
-
|
172 |
-
if not img:
|
173 |
docs.append(d)
|
174 |
continue
|
175 |
|
176 |
-
|
177 |
-
|
|
|
178 |
else:
|
179 |
-
|
180 |
|
181 |
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
182 |
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
183 |
-
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
184 |
docs.append(d)
|
185 |
|
186 |
-
for arr, img in obj.table_chunks:
|
187 |
-
for i, txt in enumerate(arr):
|
188 |
-
d = copy.deepcopy(doc)
|
189 |
-
d["content_ltks"] = huqie.qie(txt)
|
190 |
-
md5 = hashlib.md5()
|
191 |
-
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
192 |
-
d["_id"] = md5.hexdigest()
|
193 |
-
if not img:
|
194 |
-
docs.append(d)
|
195 |
-
continue
|
196 |
-
img.save(output_buffer, format='JPEG')
|
197 |
-
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
198 |
-
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
199 |
-
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
200 |
-
docs.append(d)
|
201 |
-
set_progress(row["id"], random.randint(60, 70) /
|
202 |
-
100., "Continue embedding the content.")
|
203 |
-
|
204 |
return docs
|
205 |
|
206 |
|
@@ -213,7 +166,7 @@ def init_kb(row):
|
|
213 |
|
214 |
|
215 |
def embedding(docs, mdl):
|
216 |
-
tts, cnts = [
|
217 |
tk_count = 0
|
218 |
tts, c = mdl.encode(tts)
|
219 |
tk_count += c
|
@@ -223,7 +176,7 @@ def embedding(docs, mdl):
|
|
223 |
assert len(vects) == len(docs)
|
224 |
for i, d in enumerate(docs):
|
225 |
v = vects[i].tolist()
|
226 |
-
d["q_%d_vec"%len(v)] = v
|
227 |
return tk_count
|
228 |
|
229 |
|
@@ -239,11 +192,12 @@ def main(comm, mod):
|
|
239 |
try:
|
240 |
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
|
241 |
cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT)
|
242 |
-
#TODO: sequence2text model
|
243 |
except Exception as e:
|
244 |
set_progress(r["id"], -1, str(e))
|
245 |
continue
|
246 |
|
|
|
247 |
st_tm = timer()
|
248 |
cks = build(r, cv_mdl)
|
249 |
if not cks:
|
@@ -254,21 +208,20 @@ def main(comm, mod):
|
|
254 |
try:
|
255 |
tk_count = embedding(cks, embd_mdl)
|
256 |
except Exception as e:
|
257 |
-
|
258 |
cron_logger.error(str(e))
|
259 |
continue
|
260 |
|
261 |
-
|
262 |
-
"Finished embedding! Start to build index!")
|
263 |
init_kb(r)
|
264 |
chunk_count = len(set([c["_id"] for c in cks]))
|
|
|
265 |
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
|
266 |
if es_r:
|
267 |
-
|
268 |
cron_logger.error(str(es_r))
|
269 |
else:
|
270 |
-
|
271 |
-
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm)
|
272 |
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
273 |
|
274 |
tmf.write(str(r["update_time"]) + "\n")
|
@@ -282,5 +235,6 @@ if __name__ == "__main__":
|
|
282 |
peewee_logger.setLevel(database_logger.level)
|
283 |
|
284 |
from mpi4py import MPI
|
|
|
285 |
comm = MPI.COMM_WORLD
|
286 |
main(comm.Get_size(), comm.Get_rank())
|
|
|
19 |
import os
|
20 |
import hashlib
|
21 |
import copy
|
|
|
|
|
22 |
import re
|
23 |
+
import sys
|
24 |
+
from functools import partial
|
25 |
from timeit import default_timer as timer
|
26 |
|
27 |
+
from api.db.services.task_service import TaskService
|
28 |
from rag.llm import EmbeddingModel, CvModel
|
29 |
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
|
30 |
from rag.utils import ELASTICSEARCH
|
31 |
from rag.utils import MINIO
|
32 |
from rag.utils import rmSpace, findMaxTm
|
33 |
|
34 |
+
from rag.nlp import search
|
35 |
from io import BytesIO
|
36 |
import pandas as pd
|
37 |
+
|
38 |
+
from rag.app import laws, paper, presentation, manual
|
39 |
+
|
40 |
+
from api.db import LLMType, ParserType
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
from api.db.services.document_service import DocumentService
|
42 |
+
from api.db.services.llm_service import LLMBundle
|
43 |
from api.settings import database_logger
|
|
|
44 |
from api.utils.file_utils import get_project_base_directory
|
45 |
|
46 |
BATCH_SIZE = 64
|
47 |
|
48 |
+
FACTORY = {
|
49 |
+
ParserType.GENERAL.value: laws,
|
50 |
+
ParserType.PAPER.value: paper,
|
51 |
+
ParserType.PRESENTATION.value: presentation,
|
52 |
+
ParserType.MANUAL.value: manual,
|
53 |
+
ParserType.LAWS.value: laws,
|
54 |
+
}
|
55 |
+
|
56 |
|
57 |
+
def set_progress(task_id, from_page, to_page, prog=None, msg="Processing..."):
|
58 |
+
cancel = TaskService.do_cancel(task_id)
|
59 |
+
if cancel:
|
60 |
+
msg = "Canceled."
|
61 |
+
prog = -1
|
62 |
+
|
63 |
+
if to_page > 0: msg = f"Page({from_page}~{to_page}): " + msg
|
64 |
+
d = {"progress_msg": msg}
|
65 |
+
if prog is not None: d["progress"] = prog
|
66 |
+
try:
|
67 |
+
TaskService.update_by_id(task_id, d)
|
68 |
+
except Exception as e:
|
69 |
+
cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
|
70 |
|
71 |
+
if cancel:sys.exit()
|
72 |
+
|
73 |
+
|
74 |
+
"""
|
75 |
def chuck_doc(name, binary, tenant_id, cvmdl=None):
|
76 |
suff = os.path.split(name)[-1].lower().split(".")[-1]
|
77 |
if suff.find("pdf") >= 0:
|
|
|
91 |
return field
|
92 |
|
93 |
return TextChunker()(binary)
|
94 |
+
"""
|
95 |
|
96 |
|
97 |
def collect(comm, mod, tm):
|
98 |
+
tasks = TaskService.get_tasks(tm, mod, comm)
|
99 |
+
if len(tasks) == 0:
|
100 |
return pd.DataFrame()
|
101 |
+
tasks = pd.DataFrame(tasks)
|
102 |
+
mtm = tasks["update_time"].max()
|
103 |
+
cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm))
|
104 |
+
return tasks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
def build(row, cvmdl):
|
|
|
110 |
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
|
111 |
return []
|
112 |
|
113 |
+
callback = partial(set_progress, row["id"], row["from_page"], row["to_page"])
|
114 |
+
chunker = FACTORY[row["parser_id"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
try:
|
116 |
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
117 |
+
cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"],
|
118 |
+
callback)
|
119 |
except Exception as e:
|
120 |
if re.search("(No such file|not found)", str(e)):
|
121 |
+
callback(-1, "Can not find file <%s>" % row["doc_name"])
|
|
|
|
|
122 |
else:
|
123 |
+
callback(-1, f"Internal server error: %s" % str(e).replace("'", ""))
|
|
|
|
|
|
|
124 |
|
125 |
cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
|
126 |
|
127 |
return []
|
128 |
|
129 |
+
callback(msg="Finished slicing files. Start to embedding the content.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
docs = []
|
132 |
doc = {
|
133 |
+
"doc_id": row["doc_id"],
|
134 |
+
"kb_id": [str(row["kb_id"])]
|
|
|
|
|
135 |
}
|
136 |
+
for ck in cks:
|
|
|
|
|
|
|
137 |
d = copy.deepcopy(doc)
|
138 |
+
d.update(ck)
|
139 |
md5 = hashlib.md5()
|
140 |
+
md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8"))
|
141 |
d["_id"] = md5.hexdigest()
|
142 |
+
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
143 |
+
if not d.get("image"):
|
|
|
144 |
docs.append(d)
|
145 |
continue
|
146 |
|
147 |
+
output_buffer = BytesIO()
|
148 |
+
if isinstance(d["image"], bytes):
|
149 |
+
output_buffer = BytesIO(d["image"])
|
150 |
else:
|
151 |
+
d["image"].save(output_buffer, format='JPEG')
|
152 |
|
153 |
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
154 |
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
|
|
155 |
docs.append(d)
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
return docs
|
158 |
|
159 |
|
|
|
166 |
|
167 |
|
168 |
def embedding(docs, mdl):
|
169 |
+
tts, cnts = [d["docnm_kwd"] for d in docs], [d["content_with_weight"] for d in docs]
|
170 |
tk_count = 0
|
171 |
tts, c = mdl.encode(tts)
|
172 |
tk_count += c
|
|
|
176 |
assert len(vects) == len(docs)
|
177 |
for i, d in enumerate(docs):
|
178 |
v = vects[i].tolist()
|
179 |
+
d["q_%d_vec" % len(v)] = v
|
180 |
return tk_count
|
181 |
|
182 |
|
|
|
192 |
try:
|
193 |
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
|
194 |
cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT)
|
195 |
+
# TODO: sequence2text model
|
196 |
except Exception as e:
|
197 |
set_progress(r["id"], -1, str(e))
|
198 |
continue
|
199 |
|
200 |
+
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
|
201 |
st_tm = timer()
|
202 |
cks = build(r, cv_mdl)
|
203 |
if not cks:
|
|
|
208 |
try:
|
209 |
tk_count = embedding(cks, embd_mdl)
|
210 |
except Exception as e:
|
211 |
+
callback(-1, "Embedding error:{}".format(str(e)))
|
212 |
cron_logger.error(str(e))
|
213 |
continue
|
214 |
|
215 |
+
callback(msg="Finished embedding! Start to build index!")
|
|
|
216 |
init_kb(r)
|
217 |
chunk_count = len(set([c["_id"] for c in cks]))
|
218 |
+
callback(1., "Done!")
|
219 |
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
|
220 |
if es_r:
|
221 |
+
callback(-1, "Index failure!")
|
222 |
cron_logger.error(str(es_r))
|
223 |
else:
|
224 |
+
DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
|
|
|
225 |
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
226 |
|
227 |
tmf.write(str(r["update_time"]) + "\n")
|
|
|
235 |
peewee_logger.setLevel(database_logger.level)
|
236 |
|
237 |
from mpi4py import MPI
|
238 |
+
|
239 |
comm = MPI.COMM_WORLD
|
240 |
main(comm.Get_size(), comm.Get_rank())
|