Spaces:
Sleeping
Sleeping
File size: 2,000 Bytes
06a7d62 d844f20 039fbc1 06a7d62 53b7ea9 dbea975 06a7d62 6f3a481 8358801 b5ae9b7 8358801 b5ae9b7 8358801 b5ae9b7 8358801 b5ae9b7 06a7d62 dbea975 06a7d62 823f198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
MODEL_NAME = "osmankoc/llama-2-7b-zoa"
# Model ve tokenizer'ı önceden yükle
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, torch_dtype=torch.float16, device_map="auto"
)
# ZeroGPU için model GPU'ya sadece gerektiğinde yüklenecek
@spaces.GPU
def generate(prompt):
messages = "You are HTML Web Developer. Generate HTML code using Tailwind CSS framework and Shadcn UI components. Add HTML tags to the code. Don't forget to use the correct classes. Don't write inline styles and descriptions. Here user's prompt: " + prompt
# messages = [
# {"role": "system", "content": "You are HTML Web Developer. enerate HTML code using Tailwind CSS framework and Shadcn UI components. Add HTML tags to the code. Don't forget to use the correct classes. Don't write inline styles and descriptions."},
# {"role": "user", "content": prompt}
# ]
# text = tokenizer.apply_chat_template(
# messages,
# tokenize=False,
# add_generation_prompt=True
# )
inputs = tokenizer(messages, return_tensors="pt").to("cuda")
output = model.generate(**inputs, max_length=2500)
response = tokenizer.decode(output[0], skip_special_tokens=True)
# model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
# generated_ids = model.generate(
# **model_inputs,
# max_new_tokens=512
# )
# generated_ids = [
# output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
# ]
# response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
# Gradio UI (Basit bir API arayüzü gibi çalışacak)
demo = gr.Interface(
fn=generate,
inputs=gr.Textbox(placeholder="Enter prompt..."),
outputs=gr.Textbox(),
)
demo.launch()
|