Spaces:
Running
Running
update
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
|
6 |
-
MODEL_NAME = "
|
7 |
|
8 |
# Model ve tokenizer'ı önceden yükle
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
@@ -14,14 +14,30 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
14 |
# ZeroGPU için model GPU'ya sadece gerektiğinde yüklenecek
|
15 |
@spaces.GPU
|
16 |
def generate(prompt):
|
17 |
-
|
18 |
-
"
|
19 |
-
"
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
-
|
22 |
-
|
23 |
-
output = model.generate(**inputs, max_length=2500)
|
24 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
return response
|
26 |
|
27 |
# Gradio UI (Basit bir API arayüzü gibi çalışacak)
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
|
6 |
+
MODEL_NAME = "Qwen/Qwen2.5-Coder-32B-Instruct"
|
7 |
|
8 |
# Model ve tokenizer'ı önceden yükle
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
|
14 |
# ZeroGPU için model GPU'ya sadece gerektiğinde yüklenecek
|
15 |
@spaces.GPU
|
16 |
def generate(prompt):
|
17 |
+
messages = [
|
18 |
+
{"role": "system", "content": "You are HTML Web Developer. enerate HTML code using Tailwind CSS framework and Shadcn UI components. Add HTML tags to the code. Don't forget to use the correct classes. Don't write inline styles and descriptions."},
|
19 |
+
{"role": "user", "content": prompt}
|
20 |
+
]
|
21 |
+
text = tokenizer.apply_chat_template(
|
22 |
+
messages,
|
23 |
+
tokenize=False,
|
24 |
+
add_generation_prompt=True
|
25 |
)
|
26 |
+
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
|
27 |
+
|
28 |
+
# output = model.generate(**inputs, max_length=2500)
|
29 |
+
# response = tokenizer.decode(output[0], skip_special_tokens=True)
|
30 |
+
|
31 |
+
generated_ids = model.generate(
|
32 |
+
**model_inputs,
|
33 |
+
max_new_tokens=512
|
34 |
+
)
|
35 |
+
generated_ids = [
|
36 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
37 |
+
]
|
38 |
+
|
39 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
40 |
+
|
41 |
return response
|
42 |
|
43 |
# Gradio UI (Basit bir API arayüzü gibi çalışacak)
|