ondrejbiza's picture
Working on isa demo.
a560c26
# coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Config for unsupervised training on Waymo Open."""
import ml_collections
def get_config():
"""Get the default hyperparameter configuration."""
config = ml_collections.ConfigDict()
config.seed = 42
config.seed_data = True
config.batch_size = 64
config.num_train_steps = 500000 # from the original Slot Attention
config.init_checkpoint = ml_collections.ConfigDict()
config.init_checkpoint.xid = 0 # Disabled by default.
config.init_checkpoint.wid = 1
config.optimizer_configs = ml_collections.ConfigDict()
config.optimizer_configs.optimizer = "adam"
config.optimizer_configs.grad_clip = ml_collections.ConfigDict()
config.optimizer_configs.grad_clip.clip_method = "clip_by_global_norm"
config.optimizer_configs.grad_clip.clip_value = 0.05
config.lr_configs = ml_collections.ConfigDict()
config.lr_configs.learning_rate_schedule = "compound"
config.lr_configs.factors = "constant * cosine_decay * linear_warmup"
config.lr_configs.warmup_steps = 10000 # from the original Slot Attention
config.lr_configs.steps_per_cycle = config.get_ref("num_train_steps")
# from the original Slot Attention
config.lr_configs.base_learning_rate = 4e-4
config.eval_pad_last_batch = False # True
config.log_loss_every_steps = 50
config.eval_every_steps = 5000
config.checkpoint_every_steps = 5000
config.train_metrics_spec = {
"loss": "loss",
"ari": "ari",
"ari_nobg": "ari_nobg",
}
config.eval_metrics_spec = {
"eval_loss": "loss",
"eval_ari": "ari",
"eval_ari_nobg": "ari_nobg",
}
config.data = ml_collections.ConfigDict({
"dataset_name": "waymo_open",
"shuffle_buffer_size": config.batch_size * 8,
"resolution": (128, 192)
})
config.max_instances = 11
config.num_slots = config.max_instances # Only used for metrics.
config.logging_min_n_colors = config.max_instances
config.preproc_train = [
"tfds_image_to_tfds_video",
"video_from_tfds",
]
config.preproc_eval = [
"tfds_image_to_tfds_video",
"video_from_tfds",
"delete_small_masks(threshold=0.01, max_instances_after=11)",
]
config.eval_slice_size = 1
config.eval_slice_keys = ["video", "segmentations_video"]
# Dictionary of targets and corresponding channels. Losses need to match.
targets = {"video": 3}
config.losses = {"recon": {"targets": list(targets)}}
config.losses = ml_collections.ConfigDict({
f"recon_{target}": {"loss_type": "recon", "key": target}
for target in targets})
config.model = ml_collections.ConfigDict({
"module": "invariant_slot_attention.modules.SAVi",
# Encoder.
"encoder": ml_collections.ConfigDict({
"module": "invariant_slot_attention.modules.FrameEncoder",
"reduction": "spatial_flatten",
"backbone": ml_collections.ConfigDict({
"module": "invariant_slot_attention.modules.ResNet34",
"num_classes": None,
"axis_name": "time",
"norm_type": "group",
"small_inputs": True
}),
"pos_emb": ml_collections.ConfigDict({
"module": "invariant_slot_attention.modules.PositionEmbedding",
"embedding_type": "linear",
"update_type": "concat"
}),
}),
# Corrector.
"corrector": ml_collections.ConfigDict({
"module": "invariant_slot_attention.modules.SlotAttentionTranslEquiv",
"num_iterations": 3,
"qkv_size": 64,
"mlp_size": 128,
"grid_encoder": ml_collections.ConfigDict({
"module": "invariant_slot_attention.modules.MLP",
"hidden_size": 128,
"layernorm": "pre"
}),
"add_rel_pos_to_values": True, # V3
"zero_position_init": False, # Random positions.
}),
# Predictor.
# Removed since we are running a single frame.
"predictor": ml_collections.ConfigDict({
"module": "invariant_slot_attention.modules.Identity"
}),
# Initializer.
"initializer": ml_collections.ConfigDict({
"module":
"invariant_slot_attention.modules.ParamStateInitRandomPositions",
"shape":
(11, 64), # (num_slots, slot_size)
}),
# Decoder.
"decoder": ml_collections.ConfigDict({
"module":
"invariant_slot_attention.modules.SiameseSpatialBroadcastDecoder",
"resolution": (16, 24), # Update if data resolution or strides change
"backbone": ml_collections.ConfigDict({
"module": "invariant_slot_attention.modules.CNN",
"features": [64, 64, 64, 64, 64],
"kernel_size": [(5, 5), (5, 5), (5, 5), (5, 5), (5, 5)],
"strides": [(2, 2), (2, 2), (2, 2), (1, 1), (1, 1)],
"max_pool_strides": [(1, 1), (1, 1), (1, 1), (1, 1), (1, 1)],
"layer_transpose": [True, True, True, False, False]
}),
"target_readout": ml_collections.ConfigDict({
"module": "invariant_slot_attention.modules.Readout",
"keys": list(targets),
"readout_modules": [ml_collections.ConfigDict({ # pylint: disable=g-complex-comprehension
"module": "invariant_slot_attention.modules.MLP",
"num_hidden_layers": 0,
"hidden_size": 0,
"output_size": targets[k]}) for k in targets],
}),
"relative_positions": True,
"pos_emb": ml_collections.ConfigDict({
"module":
"invariant_slot_attention.modules.RelativePositionEmbedding",
"embedding_type":
"linear",
"update_type":
"project_add",
}),
}),
"decode_corrected": True,
"decode_predicted": False,
})
# Which video-shaped variables to visualize.
config.debug_var_video_paths = {
"recon_masks": "decoder/alphas_softmaxed/__call__/0", # pylint: disable=line-too-long
}
# Define which attention matrices to log/visualize.
config.debug_var_attn_paths = {
"corrector_attn": "corrector/InvertedDotProductAttentionKeyPerQuery_0/attn" # pylint: disable=line-too-long
}
# Widths of attention matrices (for reshaping to image grid).
config.debug_var_attn_widths = {
"corrector_attn": 16,
}
return config