File size: 7,048 Bytes
a560c26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

r"""Config for unsupervised training on Waymo Open."""

import ml_collections


def get_config():
  """Get the default hyperparameter configuration."""
  config = ml_collections.ConfigDict()

  config.seed = 42
  config.seed_data = True

  config.batch_size = 64
  config.num_train_steps = 500000  # from the original Slot Attention
  config.init_checkpoint = ml_collections.ConfigDict()
  config.init_checkpoint.xid = 0  # Disabled by default.
  config.init_checkpoint.wid = 1

  config.optimizer_configs = ml_collections.ConfigDict()
  config.optimizer_configs.optimizer = "adam"

  config.optimizer_configs.grad_clip = ml_collections.ConfigDict()
  config.optimizer_configs.grad_clip.clip_method = "clip_by_global_norm"
  config.optimizer_configs.grad_clip.clip_value = 0.05

  config.lr_configs = ml_collections.ConfigDict()
  config.lr_configs.learning_rate_schedule = "compound"
  config.lr_configs.factors = "constant * cosine_decay * linear_warmup"
  config.lr_configs.warmup_steps = 10000  # from the original Slot Attention
  config.lr_configs.steps_per_cycle = config.get_ref("num_train_steps")
  # from the original Slot Attention
  config.lr_configs.base_learning_rate = 4e-4

  config.eval_pad_last_batch = False  # True
  config.log_loss_every_steps = 50
  config.eval_every_steps = 5000
  config.checkpoint_every_steps = 5000

  config.train_metrics_spec = {
      "loss": "loss",
      "ari": "ari",
      "ari_nobg": "ari_nobg",
  }
  config.eval_metrics_spec = {
      "eval_loss": "loss",
      "eval_ari": "ari",
      "eval_ari_nobg": "ari_nobg",
  }

  config.data = ml_collections.ConfigDict({
      "dataset_name": "waymo_open",
      "shuffle_buffer_size": config.batch_size * 8,
      "resolution": (128, 192)
  })

  config.max_instances = 11
  config.num_slots = config.max_instances  # Only used for metrics.
  config.logging_min_n_colors = config.max_instances

  config.preproc_train = [
      "tfds_image_to_tfds_video",
      "video_from_tfds",
  ]

  config.preproc_eval = [
      "tfds_image_to_tfds_video",
      "video_from_tfds",
      "delete_small_masks(threshold=0.01, max_instances_after=11)",
  ]

  config.eval_slice_size = 1
  config.eval_slice_keys = ["video", "segmentations_video"]

  # Dictionary of targets and corresponding channels. Losses need to match.
  targets = {"video": 3}
  config.losses = {"recon": {"targets": list(targets)}}
  config.losses = ml_collections.ConfigDict({
      f"recon_{target}": {"loss_type": "recon", "key": target}
      for target in targets})

  config.model = ml_collections.ConfigDict({
      "module": "invariant_slot_attention.modules.SAVi",

      # Encoder.
      "encoder": ml_collections.ConfigDict({
          "module": "invariant_slot_attention.modules.FrameEncoder",
          "reduction": "spatial_flatten",
          "backbone": ml_collections.ConfigDict({
              "module": "invariant_slot_attention.modules.ResNet34",
              "num_classes": None,
              "axis_name": "time",
              "norm_type": "group",
              "small_inputs": True
          }),
          "pos_emb": ml_collections.ConfigDict({
              "module": "invariant_slot_attention.modules.PositionEmbedding",
              "embedding_type": "linear",
              "update_type": "concat"
          }),
      }),

      # Corrector.
      "corrector": ml_collections.ConfigDict({
          "module": "invariant_slot_attention.modules.SlotAttentionTranslEquiv",
          "num_iterations": 3,
          "qkv_size": 64,
          "mlp_size": 128,
          "grid_encoder": ml_collections.ConfigDict({
              "module": "invariant_slot_attention.modules.MLP",
              "hidden_size": 128,
              "layernorm": "pre"
          }),
          "add_rel_pos_to_values": True,  # V3
          "zero_position_init": False,  # Random positions.
      }),

      # Predictor.
      # Removed since we are running a single frame.
      "predictor": ml_collections.ConfigDict({
          "module": "invariant_slot_attention.modules.Identity"
      }),

      # Initializer.
      "initializer": ml_collections.ConfigDict({
          "module":
              "invariant_slot_attention.modules.ParamStateInitRandomPositions",
          "shape":
              (11, 64),  # (num_slots, slot_size)
      }),

      # Decoder.
      "decoder": ml_collections.ConfigDict({
          "module":
              "invariant_slot_attention.modules.SiameseSpatialBroadcastDecoder",
          "resolution": (16, 24),  # Update if data resolution or strides change
          "backbone": ml_collections.ConfigDict({
              "module": "invariant_slot_attention.modules.CNN",
              "features": [64, 64, 64, 64, 64],
              "kernel_size": [(5, 5), (5, 5), (5, 5), (5, 5), (5, 5)],
              "strides": [(2, 2), (2, 2), (2, 2), (1, 1), (1, 1)],
              "max_pool_strides": [(1, 1), (1, 1), (1, 1), (1, 1), (1, 1)],
              "layer_transpose": [True, True, True, False, False]
          }),
          "target_readout": ml_collections.ConfigDict({
              "module": "invariant_slot_attention.modules.Readout",
              "keys": list(targets),
              "readout_modules": [ml_collections.ConfigDict({  # pylint: disable=g-complex-comprehension
                  "module": "invariant_slot_attention.modules.MLP",
                  "num_hidden_layers": 0,
                  "hidden_size": 0,
                  "output_size": targets[k]}) for k in targets],
          }),
          "relative_positions": True,
          "pos_emb": ml_collections.ConfigDict({
              "module":
                  "invariant_slot_attention.modules.RelativePositionEmbedding",
              "embedding_type":
                  "linear",
              "update_type":
                  "project_add",
          }),
      }),
      "decode_corrected": True,
      "decode_predicted": False,
  })

  # Which video-shaped variables to visualize.
  config.debug_var_video_paths = {
      "recon_masks": "decoder/alphas_softmaxed/__call__/0",  # pylint: disable=line-too-long
  }

  # Define which attention matrices to log/visualize.
  config.debug_var_attn_paths = {
      "corrector_attn": "corrector/InvertedDotProductAttentionKeyPerQuery_0/attn"  # pylint: disable=line-too-long
  }

  # Widths of attention matrices (for reshaping to image grid).
  config.debug_var_attn_widths = {
      "corrector_attn": 16,
  }

  return config