ZennyKenny's picture
Create app.py
f376d1d verified
raw
history blame
14.6 kB
import gradio as gr
import pandas as pd
import numpy as np
import io
import base64
from typing import Optional, Tuple
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
warnings.filterwarnings("ignore")
# Import Mostly AI SDK
try:
from mostlyai.sdk import MostlyAI
MOSTLY_AI_AVAILABLE = True
except ImportError:
MOSTLY_AI_AVAILABLE = False
print("Warning: Mostly AI SDK not available. Please install with: pip install mostlyai[local]")
class SyntheticDataGenerator:
def __init__(self):
self.mostly = None
self.generator = None
self.original_data = None
def initialize_mostly_ai(self):
"""Initialize Mostly AI SDK"""
if not MOSTLY_AI_AVAILABLE:
return False, "Mostly AI SDK not installed. Please install with: pip install mostlyai[local]"
try:
self.mostly = MostlyAI(local=True, local_port=8080)
return True, "Mostly AI SDK initialized successfully!"
except Exception as e:
return False, f"Failed to initialize Mostly AI SDK: {str(e)}"
def train_generator(self, data: pd.DataFrame, name: str, epochs: int = 10, max_training_time: int = 60, batch_size: int = 32, value_protection: bool = True) -> Tuple[bool, str]:
"""Train the synthetic data generator"""
if not self.mostly:
return False, "Mostly AI SDK not initialized"
try:
self.original_data = data
train_config = {'tables':
[
{
'name': name,
'data': data,
'tabular_model_configuration':
{
'max_epochs': epochs,
'max_training_time': max_training_time,
'value_protection': value_protection,
'batch_size': batch_size
}
}
]
}
self.generator = self.mostly.train(
config = train_config
)
return True, f"Generator trained successfully! Model: {name}"
except Exception as e:
return False, f"Training failed: {str(e)}"
def generate_synthetic_data(self, size: int) -> Tuple[pd.DataFrame, str]:
"""Generate synthetic data"""
if not self.generator:
return None, "No trained generator available"
try:
synthetic_data = self.mostly.generate(self.generator, size=size)
df = synthetic_data.data()
return df, f"Generated {len(df)} synthetic records successfully!"
except Exception as e:
return None, f"Generation failed: {str(e)}"
def get_quality_report(self) -> str:
"""Get quality assurance report"""
if not self.generator:
return "No trained generator available"
try:
report = self.generator.reports(display=False)
return str(report)
except Exception as e:
return f"Failed to generate report: {str(e)}"
def estimate_memory_usage(self, df: pd.DataFrame) -> str:
"""Estimate memory usage for the dataset"""
if df is None or df.empty:
return "No data to analyze"
# Calculate approximate memory usage
memory_mb = df.memory_usage(deep=True).sum() / (1024 * 1024)
rows, cols = len(df), len(df.columns)
# Estimate training memory (roughly 3-5x the data size)
estimated_training_mb = memory_mb * 4
status = "βœ… Good" if memory_mb < 100 else "⚠️ Large" if memory_mb < 500 else "❌ Very Large"
return f"""
**Memory Usage Estimate:**
- Data size: {memory_mb:.1f} MB
- Estimated training memory: {estimated_training_mb:.1f} MB
- Status: {status}
- Rows: {rows:,} | Columns: {cols}
""".strip()
# Initialize the generator
generator = SyntheticDataGenerator()
def initialize_sdk() -> Tuple[str, str]:
"""Initialize the Mostly AI SDK"""
success, message = generator.initialize_mostly_ai()
status = "βœ… Success" if success else "❌ Error"
return status, message
def train_model(data: pd.DataFrame, model_name: str, epochs: int, max_training_time: int, batch_size: int, value_protection: bool) -> Tuple[str, str]:
"""Train the synthetic data generator"""
if data is None or data.empty:
return "❌ Error", "Please upload or create sample data first"
success, message = generator.train_generator(data, model_name, epochs, max_training_time, batch_size, value_protection)
status = "βœ… Success" if success else "❌ Error"
return status, message
def generate_data(size: int) -> Tuple[pd.DataFrame, str]:
"""Generate synthetic data"""
if generator.generator is None:
return None, "❌ Please train a model first"
synthetic_df, message = generator.generate_synthetic_data(size)
if synthetic_df is not None:
status = "βœ… Success"
else:
status = "❌ Error"
return synthetic_df, f"{status} - {message}"
def get_quality_report() -> str:
"""Get quality report"""
return generator.get_quality_report()
def create_comparison_plot(original_df: pd.DataFrame, synthetic_df: pd.DataFrame) -> go.Figure:
"""Create comparison plots between original and synthetic data"""
if original_df is None or synthetic_df is None:
return None
# Select numeric columns for comparison
numeric_cols = original_df.select_dtypes(include=[np.number]).columns.tolist()
if not numeric_cols:
return None
# Create subplots
n_cols = min(3, len(numeric_cols))
n_rows = (len(numeric_cols) + n_cols - 1) // n_cols
fig = make_subplots(
rows=n_rows,
cols=n_cols,
subplot_titles=numeric_cols[:n_rows*n_cols]
)
for i, col in enumerate(numeric_cols[:n_rows*n_cols]):
row = i // n_cols + 1
col_idx = i % n_cols + 1
# Add original data histogram
fig.add_trace(
go.Histogram(
x=original_df[col],
name=f'Original {col}',
opacity=0.7,
nbinsx=20
),
row=row, col=col_idx
)
# Add synthetic data histogram
fig.add_trace(
go.Histogram(
x=synthetic_df[col],
name=f'Synthetic {col}',
opacity=0.7,
nbinsx=20
),
row=row, col=col_idx
)
fig.update_layout(
title="Original vs Synthetic Data Comparison",
height=300 * n_rows,
showlegend=True
)
return fig
def download_csv(df: pd.DataFrame) -> str:
"""Convert DataFrame to CSV for download"""
if df is None or df.empty:
return None
csv = df.to_csv(index=False)
return csv
# Create the Gradio interface
def create_interface():
with gr.Blocks(title="MOSTLY AI Synthetic Data Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎭 MOSTLY AI Synthetic Data Generator
Generate high-quality synthetic data using the Mostly AI SDK. Upload your own CSV files to generate synthetic data that preserves the statistical properties of your original dataset.
""")
with gr.Tab("πŸš€ Quick Start"):
gr.Markdown("### Initialize the SDK and upload your data")
with gr.Row():
with gr.Column():
init_btn = gr.Button("Initialize Mostly AI SDK", variant="primary")
init_status = gr.Textbox(label="Initialization Status", interactive=False)
with gr.Column():
gr.Markdown("""
**Next Steps:**
1. Initialize the SDK (click button above)
2. Go to "Upload Data and Train Model" tab to upload your CSV file
3. Train a model on your data
4. Generate synthetic data
""")
with gr.Tab("πŸ“Š Upload Data and Train Model"):
gr.Markdown("### Upload your CSV file to generate synthetic data")
gr.Markdown("""
**πŸ“‹ File Requirements:**
- **Format:** CSV with header row
- **Size:** Optimized for Hugging Face Spaces (2 vCPU, 16GB RAM)
""")
file_upload = gr.File(
label="Upload CSV File",
file_types=[".csv"],
file_count="single"
)
uploaded_data = gr.Dataframe(label="Uploaded Data", interactive=False)
memory_info = gr.Markdown(label="Memory Usage Info", visible=False)
with gr.Row():
with gr.Column():
model_name = gr.Textbox(
value="My Synthetic Model",
label="Model Name",
placeholder="Enter a name for your model"
)
epochs = gr.Slider(1, 200, value=100, step=1, label="Training Epochs")
max_training_time = gr.Slider(1, 1000, value=60, step=1, label="Maximum Training Time")
batch_size = gr.Slider(8, 1024, value=32, step=8, label="Training Batch Size")
value_protection = gr.Checkbox(label="Value Protection", info="Enable Value Protection")
train_btn = gr.Button("Train Model", variant="primary")
with gr.Column():
train_status = gr.Textbox(label="Training Status", interactive=False)
quality_report = gr.Textbox(label="Quality Report", lines=10, interactive=False)
get_report_btn = gr.Button("Get Quality Report", variant="secondary")
with gr.Tab("🎲 Generate Data"):
gr.Markdown("### Generate synthetic data from your trained model")
with gr.Row():
with gr.Column():
gen_size = gr.Slider(10, 1000, value=100, step=10, label="Number of Records to Generate")
generate_btn = gr.Button("Generate Synthetic Data", variant="primary")
with gr.Column():
gen_status = gr.Textbox(label="Generation Status", interactive=False)
synthetic_data = gr.Dataframe(label="Synthetic Data", interactive=False)
with gr.Row():
download_btn = gr.DownloadButton("Download CSV", variant="secondary")
comparison_plot = gr.Plot(label="Data Comparison")
# Event handlers
init_btn.click(
initialize_sdk,
outputs=[init_status, init_status]
)
train_btn.click(
train_model,
inputs=[uploaded_data, model_name, epochs, max_training_time, batch_size, value_protection],
outputs=[train_status, train_status]
)
get_report_btn.click(
get_quality_report,
outputs=[quality_report]
)
generate_btn.click(
generate_data,
inputs=[gen_size],
outputs=[synthetic_data, gen_status]
)
# Update download button when synthetic data changes
synthetic_data.change(
download_csv,
inputs=[synthetic_data],
outputs=[download_btn]
)
# Create comparison plot when both datasets are available
synthetic_data.change(
create_comparison_plot,
inputs=[uploaded_data, synthetic_data],
outputs=[comparison_plot]
)
# Handle file upload with size and column limits
def process_uploaded_file(file):
if file is None:
return None, "No file uploaded", gr.update(visible=False)
try:
# Read the CSV file
df = pd.read_csv(file.name)
# # Check column limit (max 20 columns)
# if len(df.columns) > 20:
# return None, f"❌ Too many columns! Maximum allowed: 20, found: {len(df.columns)}. Please reduce the number of columns in your CSV file.", gr.update(visible=False)
# # Check row limit (max 10,000 records)
# if len(df) > 10000:
# return None, f"❌ Too many records! Maximum allowed: 10,000, found: {len(df)}. Please reduce the number of rows in your CSV file.", gr.update(visible=False)
# # Check minimum requirements
# if len(df) < 1000:
# return None, f"❌ Too few records! Minimum required: 1,000, found: {len(df)}. Please provide more data for training.", gr.update(visible=False)
# if len(df.columns) < 2:
# return None, f"❌ Too few columns! Minimum required: 2, found: {len(df.columns)}. Please provide more columns for training.", gr.update(visible=False)
# Success message with file info
success_msg = f"βœ… File uploaded successfully! {len(df)} rows Γ— {len(df.columns)} columns"
# Generate memory usage info
memory_info = generator.estimate_memory_usage(df)
return df, success_msg, gr.update(value=memory_info, visible=True)
except Exception as e:
return None, f"❌ Error reading file: {str(e)}", gr.update(visible=False)
file_upload.change(
process_uploaded_file,
inputs=[file_upload],
outputs=[uploaded_data, train_status, memory_info]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)