Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import io
|
| 5 |
+
import base64
|
| 6 |
+
from typing import Optional, Tuple
|
| 7 |
+
import plotly.express as px
|
| 8 |
+
import plotly.graph_objects as go
|
| 9 |
+
from plotly.subplots import make_subplots
|
| 10 |
+
import warnings
|
| 11 |
+
warnings.filterwarnings("ignore")
|
| 12 |
+
|
| 13 |
+
# Import Mostly AI SDK
|
| 14 |
+
try:
|
| 15 |
+
from mostlyai.sdk import MostlyAI
|
| 16 |
+
MOSTLY_AI_AVAILABLE = True
|
| 17 |
+
except ImportError:
|
| 18 |
+
MOSTLY_AI_AVAILABLE = False
|
| 19 |
+
print("Warning: Mostly AI SDK not available. Please install with: pip install mostlyai[local]")
|
| 20 |
+
|
| 21 |
+
class SyntheticDataGenerator:
|
| 22 |
+
def __init__(self):
|
| 23 |
+
self.mostly = None
|
| 24 |
+
self.generator = None
|
| 25 |
+
self.original_data = None
|
| 26 |
+
|
| 27 |
+
def initialize_mostly_ai(self):
|
| 28 |
+
"""Initialize Mostly AI SDK"""
|
| 29 |
+
if not MOSTLY_AI_AVAILABLE:
|
| 30 |
+
return False, "Mostly AI SDK not installed. Please install with: pip install mostlyai[local]"
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
self.mostly = MostlyAI(local=True, local_port=8080)
|
| 34 |
+
return True, "Mostly AI SDK initialized successfully!"
|
| 35 |
+
except Exception as e:
|
| 36 |
+
return False, f"Failed to initialize Mostly AI SDK: {str(e)}"
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def train_generator(self, data: pd.DataFrame, name: str, epochs: int = 10, max_training_time: int = 60, batch_size: int = 32, value_protection: bool = True) -> Tuple[bool, str]:
|
| 40 |
+
"""Train the synthetic data generator"""
|
| 41 |
+
if not self.mostly:
|
| 42 |
+
return False, "Mostly AI SDK not initialized"
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
self.original_data = data
|
| 46 |
+
train_config = {'tables':
|
| 47 |
+
[
|
| 48 |
+
{
|
| 49 |
+
'name': name,
|
| 50 |
+
'data': data,
|
| 51 |
+
'tabular_model_configuration':
|
| 52 |
+
{
|
| 53 |
+
'max_epochs': epochs,
|
| 54 |
+
'max_training_time': max_training_time,
|
| 55 |
+
'value_protection': value_protection,
|
| 56 |
+
'batch_size': batch_size
|
| 57 |
+
}
|
| 58 |
+
}
|
| 59 |
+
]
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
self.generator = self.mostly.train(
|
| 63 |
+
config = train_config
|
| 64 |
+
)
|
| 65 |
+
return True, f"Generator trained successfully! Model: {name}"
|
| 66 |
+
except Exception as e:
|
| 67 |
+
return False, f"Training failed: {str(e)}"
|
| 68 |
+
|
| 69 |
+
def generate_synthetic_data(self, size: int) -> Tuple[pd.DataFrame, str]:
|
| 70 |
+
"""Generate synthetic data"""
|
| 71 |
+
if not self.generator:
|
| 72 |
+
return None, "No trained generator available"
|
| 73 |
+
|
| 74 |
+
try:
|
| 75 |
+
synthetic_data = self.mostly.generate(self.generator, size=size)
|
| 76 |
+
df = synthetic_data.data()
|
| 77 |
+
return df, f"Generated {len(df)} synthetic records successfully!"
|
| 78 |
+
except Exception as e:
|
| 79 |
+
return None, f"Generation failed: {str(e)}"
|
| 80 |
+
|
| 81 |
+
def get_quality_report(self) -> str:
|
| 82 |
+
"""Get quality assurance report"""
|
| 83 |
+
if not self.generator:
|
| 84 |
+
return "No trained generator available"
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
report = self.generator.reports(display=False)
|
| 88 |
+
return str(report)
|
| 89 |
+
except Exception as e:
|
| 90 |
+
return f"Failed to generate report: {str(e)}"
|
| 91 |
+
|
| 92 |
+
def estimate_memory_usage(self, df: pd.DataFrame) -> str:
|
| 93 |
+
"""Estimate memory usage for the dataset"""
|
| 94 |
+
if df is None or df.empty:
|
| 95 |
+
return "No data to analyze"
|
| 96 |
+
|
| 97 |
+
# Calculate approximate memory usage
|
| 98 |
+
memory_mb = df.memory_usage(deep=True).sum() / (1024 * 1024)
|
| 99 |
+
rows, cols = len(df), len(df.columns)
|
| 100 |
+
|
| 101 |
+
# Estimate training memory (roughly 3-5x the data size)
|
| 102 |
+
estimated_training_mb = memory_mb * 4
|
| 103 |
+
|
| 104 |
+
status = "β
Good" if memory_mb < 100 else "β οΈ Large" if memory_mb < 500 else "β Very Large"
|
| 105 |
+
|
| 106 |
+
return f"""
|
| 107 |
+
**Memory Usage Estimate:**
|
| 108 |
+
- Data size: {memory_mb:.1f} MB
|
| 109 |
+
- Estimated training memory: {estimated_training_mb:.1f} MB
|
| 110 |
+
- Status: {status}
|
| 111 |
+
- Rows: {rows:,} | Columns: {cols}
|
| 112 |
+
""".strip()
|
| 113 |
+
|
| 114 |
+
# Initialize the generator
|
| 115 |
+
generator = SyntheticDataGenerator()
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def initialize_sdk() -> Tuple[str, str]:
|
| 119 |
+
"""Initialize the Mostly AI SDK"""
|
| 120 |
+
success, message = generator.initialize_mostly_ai()
|
| 121 |
+
status = "β
Success" if success else "β Error"
|
| 122 |
+
return status, message
|
| 123 |
+
|
| 124 |
+
def train_model(data: pd.DataFrame, model_name: str, epochs: int, max_training_time: int, batch_size: int, value_protection: bool) -> Tuple[str, str]:
|
| 125 |
+
"""Train the synthetic data generator"""
|
| 126 |
+
if data is None or data.empty:
|
| 127 |
+
return "β Error", "Please upload or create sample data first"
|
| 128 |
+
|
| 129 |
+
success, message = generator.train_generator(data, model_name, epochs, max_training_time, batch_size, value_protection)
|
| 130 |
+
status = "β
Success" if success else "β Error"
|
| 131 |
+
return status, message
|
| 132 |
+
|
| 133 |
+
def generate_data(size: int) -> Tuple[pd.DataFrame, str]:
|
| 134 |
+
"""Generate synthetic data"""
|
| 135 |
+
if generator.generator is None:
|
| 136 |
+
return None, "β Please train a model first"
|
| 137 |
+
|
| 138 |
+
synthetic_df, message = generator.generate_synthetic_data(size)
|
| 139 |
+
if synthetic_df is not None:
|
| 140 |
+
status = "β
Success"
|
| 141 |
+
else:
|
| 142 |
+
status = "β Error"
|
| 143 |
+
|
| 144 |
+
return synthetic_df, f"{status} - {message}"
|
| 145 |
+
|
| 146 |
+
def get_quality_report() -> str:
|
| 147 |
+
"""Get quality report"""
|
| 148 |
+
return generator.get_quality_report()
|
| 149 |
+
|
| 150 |
+
def create_comparison_plot(original_df: pd.DataFrame, synthetic_df: pd.DataFrame) -> go.Figure:
|
| 151 |
+
"""Create comparison plots between original and synthetic data"""
|
| 152 |
+
if original_df is None or synthetic_df is None:
|
| 153 |
+
return None
|
| 154 |
+
|
| 155 |
+
# Select numeric columns for comparison
|
| 156 |
+
numeric_cols = original_df.select_dtypes(include=[np.number]).columns.tolist()
|
| 157 |
+
|
| 158 |
+
if not numeric_cols:
|
| 159 |
+
return None
|
| 160 |
+
|
| 161 |
+
# Create subplots
|
| 162 |
+
n_cols = min(3, len(numeric_cols))
|
| 163 |
+
n_rows = (len(numeric_cols) + n_cols - 1) // n_cols
|
| 164 |
+
|
| 165 |
+
fig = make_subplots(
|
| 166 |
+
rows=n_rows,
|
| 167 |
+
cols=n_cols,
|
| 168 |
+
subplot_titles=numeric_cols[:n_rows*n_cols]
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
for i, col in enumerate(numeric_cols[:n_rows*n_cols]):
|
| 172 |
+
row = i // n_cols + 1
|
| 173 |
+
col_idx = i % n_cols + 1
|
| 174 |
+
|
| 175 |
+
# Add original data histogram
|
| 176 |
+
fig.add_trace(
|
| 177 |
+
go.Histogram(
|
| 178 |
+
x=original_df[col],
|
| 179 |
+
name=f'Original {col}',
|
| 180 |
+
opacity=0.7,
|
| 181 |
+
nbinsx=20
|
| 182 |
+
),
|
| 183 |
+
row=row, col=col_idx
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Add synthetic data histogram
|
| 187 |
+
fig.add_trace(
|
| 188 |
+
go.Histogram(
|
| 189 |
+
x=synthetic_df[col],
|
| 190 |
+
name=f'Synthetic {col}',
|
| 191 |
+
opacity=0.7,
|
| 192 |
+
nbinsx=20
|
| 193 |
+
),
|
| 194 |
+
row=row, col=col_idx
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
fig.update_layout(
|
| 198 |
+
title="Original vs Synthetic Data Comparison",
|
| 199 |
+
height=300 * n_rows,
|
| 200 |
+
showlegend=True
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
return fig
|
| 204 |
+
|
| 205 |
+
def download_csv(df: pd.DataFrame) -> str:
|
| 206 |
+
"""Convert DataFrame to CSV for download"""
|
| 207 |
+
if df is None or df.empty:
|
| 208 |
+
return None
|
| 209 |
+
|
| 210 |
+
csv = df.to_csv(index=False)
|
| 211 |
+
return csv
|
| 212 |
+
|
| 213 |
+
# Create the Gradio interface
|
| 214 |
+
def create_interface():
|
| 215 |
+
with gr.Blocks(title="MOSTLY AI Synthetic Data Generator", theme=gr.themes.Soft()) as demo:
|
| 216 |
+
gr.Markdown("""
|
| 217 |
+
# π MOSTLY AI Synthetic Data Generator
|
| 218 |
+
|
| 219 |
+
Generate high-quality synthetic data using the Mostly AI SDK. Upload your own CSV files to generate synthetic data that preserves the statistical properties of your original dataset.
|
| 220 |
+
""")
|
| 221 |
+
|
| 222 |
+
with gr.Tab("π Quick Start"):
|
| 223 |
+
gr.Markdown("### Initialize the SDK and upload your data")
|
| 224 |
+
|
| 225 |
+
with gr.Row():
|
| 226 |
+
with gr.Column():
|
| 227 |
+
init_btn = gr.Button("Initialize Mostly AI SDK", variant="primary")
|
| 228 |
+
init_status = gr.Textbox(label="Initialization Status", interactive=False)
|
| 229 |
+
|
| 230 |
+
with gr.Column():
|
| 231 |
+
gr.Markdown("""
|
| 232 |
+
**Next Steps:**
|
| 233 |
+
1. Initialize the SDK (click button above)
|
| 234 |
+
2. Go to "Upload Data and Train Model" tab to upload your CSV file
|
| 235 |
+
3. Train a model on your data
|
| 236 |
+
4. Generate synthetic data
|
| 237 |
+
""")
|
| 238 |
+
|
| 239 |
+
with gr.Tab("π Upload Data and Train Model"):
|
| 240 |
+
gr.Markdown("### Upload your CSV file to generate synthetic data")
|
| 241 |
+
|
| 242 |
+
gr.Markdown("""
|
| 243 |
+
**π File Requirements:**
|
| 244 |
+
- **Format:** CSV with header row
|
| 245 |
+
- **Size:** Optimized for Hugging Face Spaces (2 vCPU, 16GB RAM)
|
| 246 |
+
""")
|
| 247 |
+
|
| 248 |
+
file_upload = gr.File(
|
| 249 |
+
label="Upload CSV File",
|
| 250 |
+
file_types=[".csv"],
|
| 251 |
+
file_count="single"
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
uploaded_data = gr.Dataframe(label="Uploaded Data", interactive=False)
|
| 255 |
+
|
| 256 |
+
memory_info = gr.Markdown(label="Memory Usage Info", visible=False)
|
| 257 |
+
|
| 258 |
+
with gr.Row():
|
| 259 |
+
with gr.Column():
|
| 260 |
+
model_name = gr.Textbox(
|
| 261 |
+
value="My Synthetic Model",
|
| 262 |
+
label="Model Name",
|
| 263 |
+
placeholder="Enter a name for your model"
|
| 264 |
+
)
|
| 265 |
+
epochs = gr.Slider(1, 200, value=100, step=1, label="Training Epochs")
|
| 266 |
+
max_training_time = gr.Slider(1, 1000, value=60, step=1, label="Maximum Training Time")
|
| 267 |
+
batch_size = gr.Slider(8, 1024, value=32, step=8, label="Training Batch Size")
|
| 268 |
+
value_protection = gr.Checkbox(label="Value Protection", info="Enable Value Protection")
|
| 269 |
+
train_btn = gr.Button("Train Model", variant="primary")
|
| 270 |
+
|
| 271 |
+
with gr.Column():
|
| 272 |
+
train_status = gr.Textbox(label="Training Status", interactive=False)
|
| 273 |
+
quality_report = gr.Textbox(label="Quality Report", lines=10, interactive=False)
|
| 274 |
+
|
| 275 |
+
get_report_btn = gr.Button("Get Quality Report", variant="secondary")
|
| 276 |
+
|
| 277 |
+
with gr.Tab("π² Generate Data"):
|
| 278 |
+
gr.Markdown("### Generate synthetic data from your trained model")
|
| 279 |
+
|
| 280 |
+
with gr.Row():
|
| 281 |
+
with gr.Column():
|
| 282 |
+
gen_size = gr.Slider(10, 1000, value=100, step=10, label="Number of Records to Generate")
|
| 283 |
+
generate_btn = gr.Button("Generate Synthetic Data", variant="primary")
|
| 284 |
+
|
| 285 |
+
with gr.Column():
|
| 286 |
+
gen_status = gr.Textbox(label="Generation Status", interactive=False)
|
| 287 |
+
|
| 288 |
+
synthetic_data = gr.Dataframe(label="Synthetic Data", interactive=False)
|
| 289 |
+
|
| 290 |
+
with gr.Row():
|
| 291 |
+
download_btn = gr.DownloadButton("Download CSV", variant="secondary")
|
| 292 |
+
comparison_plot = gr.Plot(label="Data Comparison")
|
| 293 |
+
|
| 294 |
+
# Event handlers
|
| 295 |
+
init_btn.click(
|
| 296 |
+
initialize_sdk,
|
| 297 |
+
outputs=[init_status, init_status]
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
train_btn.click(
|
| 301 |
+
train_model,
|
| 302 |
+
inputs=[uploaded_data, model_name, epochs, max_training_time, batch_size, value_protection],
|
| 303 |
+
outputs=[train_status, train_status]
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
get_report_btn.click(
|
| 307 |
+
get_quality_report,
|
| 308 |
+
outputs=[quality_report]
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
generate_btn.click(
|
| 312 |
+
generate_data,
|
| 313 |
+
inputs=[gen_size],
|
| 314 |
+
outputs=[synthetic_data, gen_status]
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
# Update download button when synthetic data changes
|
| 318 |
+
synthetic_data.change(
|
| 319 |
+
download_csv,
|
| 320 |
+
inputs=[synthetic_data],
|
| 321 |
+
outputs=[download_btn]
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
# Create comparison plot when both datasets are available
|
| 325 |
+
synthetic_data.change(
|
| 326 |
+
create_comparison_plot,
|
| 327 |
+
inputs=[uploaded_data, synthetic_data],
|
| 328 |
+
outputs=[comparison_plot]
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
# Handle file upload with size and column limits
|
| 332 |
+
def process_uploaded_file(file):
|
| 333 |
+
if file is None:
|
| 334 |
+
return None, "No file uploaded", gr.update(visible=False)
|
| 335 |
+
|
| 336 |
+
try:
|
| 337 |
+
# Read the CSV file
|
| 338 |
+
df = pd.read_csv(file.name)
|
| 339 |
+
|
| 340 |
+
# # Check column limit (max 20 columns)
|
| 341 |
+
# if len(df.columns) > 20:
|
| 342 |
+
# return None, f"β Too many columns! Maximum allowed: 20, found: {len(df.columns)}. Please reduce the number of columns in your CSV file.", gr.update(visible=False)
|
| 343 |
+
|
| 344 |
+
# # Check row limit (max 10,000 records)
|
| 345 |
+
# if len(df) > 10000:
|
| 346 |
+
# return None, f"β Too many records! Maximum allowed: 10,000, found: {len(df)}. Please reduce the number of rows in your CSV file.", gr.update(visible=False)
|
| 347 |
+
|
| 348 |
+
# # Check minimum requirements
|
| 349 |
+
# if len(df) < 1000:
|
| 350 |
+
# return None, f"β Too few records! Minimum required: 1,000, found: {len(df)}. Please provide more data for training.", gr.update(visible=False)
|
| 351 |
+
|
| 352 |
+
# if len(df.columns) < 2:
|
| 353 |
+
# return None, f"β Too few columns! Minimum required: 2, found: {len(df.columns)}. Please provide more columns for training.", gr.update(visible=False)
|
| 354 |
+
|
| 355 |
+
# Success message with file info
|
| 356 |
+
success_msg = f"β
File uploaded successfully! {len(df)} rows Γ {len(df.columns)} columns"
|
| 357 |
+
|
| 358 |
+
# Generate memory usage info
|
| 359 |
+
memory_info = generator.estimate_memory_usage(df)
|
| 360 |
+
|
| 361 |
+
return df, success_msg, gr.update(value=memory_info, visible=True)
|
| 362 |
+
|
| 363 |
+
except Exception as e:
|
| 364 |
+
return None, f"β Error reading file: {str(e)}", gr.update(visible=False)
|
| 365 |
+
|
| 366 |
+
file_upload.change(
|
| 367 |
+
process_uploaded_file,
|
| 368 |
+
inputs=[file_upload],
|
| 369 |
+
outputs=[uploaded_data, train_status, memory_info]
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
return demo
|
| 373 |
+
|
| 374 |
+
if __name__ == "__main__":
|
| 375 |
+
demo = create_interface()
|
| 376 |
+
demo.launch(
|
| 377 |
+
server_name="0.0.0.0",
|
| 378 |
+
server_port=7860,
|
| 379 |
+
share=True
|
| 380 |
+
)
|