Spaces:
Running
Running
File size: 14,618 Bytes
f376d1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
import pandas as pd
import numpy as np
import io
import base64
from typing import Optional, Tuple
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
warnings.filterwarnings("ignore")
# Import Mostly AI SDK
try:
from mostlyai.sdk import MostlyAI
MOSTLY_AI_AVAILABLE = True
except ImportError:
MOSTLY_AI_AVAILABLE = False
print("Warning: Mostly AI SDK not available. Please install with: pip install mostlyai[local]")
class SyntheticDataGenerator:
def __init__(self):
self.mostly = None
self.generator = None
self.original_data = None
def initialize_mostly_ai(self):
"""Initialize Mostly AI SDK"""
if not MOSTLY_AI_AVAILABLE:
return False, "Mostly AI SDK not installed. Please install with: pip install mostlyai[local]"
try:
self.mostly = MostlyAI(local=True, local_port=8080)
return True, "Mostly AI SDK initialized successfully!"
except Exception as e:
return False, f"Failed to initialize Mostly AI SDK: {str(e)}"
def train_generator(self, data: pd.DataFrame, name: str, epochs: int = 10, max_training_time: int = 60, batch_size: int = 32, value_protection: bool = True) -> Tuple[bool, str]:
"""Train the synthetic data generator"""
if not self.mostly:
return False, "Mostly AI SDK not initialized"
try:
self.original_data = data
train_config = {'tables':
[
{
'name': name,
'data': data,
'tabular_model_configuration':
{
'max_epochs': epochs,
'max_training_time': max_training_time,
'value_protection': value_protection,
'batch_size': batch_size
}
}
]
}
self.generator = self.mostly.train(
config = train_config
)
return True, f"Generator trained successfully! Model: {name}"
except Exception as e:
return False, f"Training failed: {str(e)}"
def generate_synthetic_data(self, size: int) -> Tuple[pd.DataFrame, str]:
"""Generate synthetic data"""
if not self.generator:
return None, "No trained generator available"
try:
synthetic_data = self.mostly.generate(self.generator, size=size)
df = synthetic_data.data()
return df, f"Generated {len(df)} synthetic records successfully!"
except Exception as e:
return None, f"Generation failed: {str(e)}"
def get_quality_report(self) -> str:
"""Get quality assurance report"""
if not self.generator:
return "No trained generator available"
try:
report = self.generator.reports(display=False)
return str(report)
except Exception as e:
return f"Failed to generate report: {str(e)}"
def estimate_memory_usage(self, df: pd.DataFrame) -> str:
"""Estimate memory usage for the dataset"""
if df is None or df.empty:
return "No data to analyze"
# Calculate approximate memory usage
memory_mb = df.memory_usage(deep=True).sum() / (1024 * 1024)
rows, cols = len(df), len(df.columns)
# Estimate training memory (roughly 3-5x the data size)
estimated_training_mb = memory_mb * 4
status = "β
Good" if memory_mb < 100 else "β οΈ Large" if memory_mb < 500 else "β Very Large"
return f"""
**Memory Usage Estimate:**
- Data size: {memory_mb:.1f} MB
- Estimated training memory: {estimated_training_mb:.1f} MB
- Status: {status}
- Rows: {rows:,} | Columns: {cols}
""".strip()
# Initialize the generator
generator = SyntheticDataGenerator()
def initialize_sdk() -> Tuple[str, str]:
"""Initialize the Mostly AI SDK"""
success, message = generator.initialize_mostly_ai()
status = "β
Success" if success else "β Error"
return status, message
def train_model(data: pd.DataFrame, model_name: str, epochs: int, max_training_time: int, batch_size: int, value_protection: bool) -> Tuple[str, str]:
"""Train the synthetic data generator"""
if data is None or data.empty:
return "β Error", "Please upload or create sample data first"
success, message = generator.train_generator(data, model_name, epochs, max_training_time, batch_size, value_protection)
status = "β
Success" if success else "β Error"
return status, message
def generate_data(size: int) -> Tuple[pd.DataFrame, str]:
"""Generate synthetic data"""
if generator.generator is None:
return None, "β Please train a model first"
synthetic_df, message = generator.generate_synthetic_data(size)
if synthetic_df is not None:
status = "β
Success"
else:
status = "β Error"
return synthetic_df, f"{status} - {message}"
def get_quality_report() -> str:
"""Get quality report"""
return generator.get_quality_report()
def create_comparison_plot(original_df: pd.DataFrame, synthetic_df: pd.DataFrame) -> go.Figure:
"""Create comparison plots between original and synthetic data"""
if original_df is None or synthetic_df is None:
return None
# Select numeric columns for comparison
numeric_cols = original_df.select_dtypes(include=[np.number]).columns.tolist()
if not numeric_cols:
return None
# Create subplots
n_cols = min(3, len(numeric_cols))
n_rows = (len(numeric_cols) + n_cols - 1) // n_cols
fig = make_subplots(
rows=n_rows,
cols=n_cols,
subplot_titles=numeric_cols[:n_rows*n_cols]
)
for i, col in enumerate(numeric_cols[:n_rows*n_cols]):
row = i // n_cols + 1
col_idx = i % n_cols + 1
# Add original data histogram
fig.add_trace(
go.Histogram(
x=original_df[col],
name=f'Original {col}',
opacity=0.7,
nbinsx=20
),
row=row, col=col_idx
)
# Add synthetic data histogram
fig.add_trace(
go.Histogram(
x=synthetic_df[col],
name=f'Synthetic {col}',
opacity=0.7,
nbinsx=20
),
row=row, col=col_idx
)
fig.update_layout(
title="Original vs Synthetic Data Comparison",
height=300 * n_rows,
showlegend=True
)
return fig
def download_csv(df: pd.DataFrame) -> str:
"""Convert DataFrame to CSV for download"""
if df is None or df.empty:
return None
csv = df.to_csv(index=False)
return csv
# Create the Gradio interface
def create_interface():
with gr.Blocks(title="MOSTLY AI Synthetic Data Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π MOSTLY AI Synthetic Data Generator
Generate high-quality synthetic data using the Mostly AI SDK. Upload your own CSV files to generate synthetic data that preserves the statistical properties of your original dataset.
""")
with gr.Tab("π Quick Start"):
gr.Markdown("### Initialize the SDK and upload your data")
with gr.Row():
with gr.Column():
init_btn = gr.Button("Initialize Mostly AI SDK", variant="primary")
init_status = gr.Textbox(label="Initialization Status", interactive=False)
with gr.Column():
gr.Markdown("""
**Next Steps:**
1. Initialize the SDK (click button above)
2. Go to "Upload Data and Train Model" tab to upload your CSV file
3. Train a model on your data
4. Generate synthetic data
""")
with gr.Tab("π Upload Data and Train Model"):
gr.Markdown("### Upload your CSV file to generate synthetic data")
gr.Markdown("""
**π File Requirements:**
- **Format:** CSV with header row
- **Size:** Optimized for Hugging Face Spaces (2 vCPU, 16GB RAM)
""")
file_upload = gr.File(
label="Upload CSV File",
file_types=[".csv"],
file_count="single"
)
uploaded_data = gr.Dataframe(label="Uploaded Data", interactive=False)
memory_info = gr.Markdown(label="Memory Usage Info", visible=False)
with gr.Row():
with gr.Column():
model_name = gr.Textbox(
value="My Synthetic Model",
label="Model Name",
placeholder="Enter a name for your model"
)
epochs = gr.Slider(1, 200, value=100, step=1, label="Training Epochs")
max_training_time = gr.Slider(1, 1000, value=60, step=1, label="Maximum Training Time")
batch_size = gr.Slider(8, 1024, value=32, step=8, label="Training Batch Size")
value_protection = gr.Checkbox(label="Value Protection", info="Enable Value Protection")
train_btn = gr.Button("Train Model", variant="primary")
with gr.Column():
train_status = gr.Textbox(label="Training Status", interactive=False)
quality_report = gr.Textbox(label="Quality Report", lines=10, interactive=False)
get_report_btn = gr.Button("Get Quality Report", variant="secondary")
with gr.Tab("π² Generate Data"):
gr.Markdown("### Generate synthetic data from your trained model")
with gr.Row():
with gr.Column():
gen_size = gr.Slider(10, 1000, value=100, step=10, label="Number of Records to Generate")
generate_btn = gr.Button("Generate Synthetic Data", variant="primary")
with gr.Column():
gen_status = gr.Textbox(label="Generation Status", interactive=False)
synthetic_data = gr.Dataframe(label="Synthetic Data", interactive=False)
with gr.Row():
download_btn = gr.DownloadButton("Download CSV", variant="secondary")
comparison_plot = gr.Plot(label="Data Comparison")
# Event handlers
init_btn.click(
initialize_sdk,
outputs=[init_status, init_status]
)
train_btn.click(
train_model,
inputs=[uploaded_data, model_name, epochs, max_training_time, batch_size, value_protection],
outputs=[train_status, train_status]
)
get_report_btn.click(
get_quality_report,
outputs=[quality_report]
)
generate_btn.click(
generate_data,
inputs=[gen_size],
outputs=[synthetic_data, gen_status]
)
# Update download button when synthetic data changes
synthetic_data.change(
download_csv,
inputs=[synthetic_data],
outputs=[download_btn]
)
# Create comparison plot when both datasets are available
synthetic_data.change(
create_comparison_plot,
inputs=[uploaded_data, synthetic_data],
outputs=[comparison_plot]
)
# Handle file upload with size and column limits
def process_uploaded_file(file):
if file is None:
return None, "No file uploaded", gr.update(visible=False)
try:
# Read the CSV file
df = pd.read_csv(file.name)
# # Check column limit (max 20 columns)
# if len(df.columns) > 20:
# return None, f"β Too many columns! Maximum allowed: 20, found: {len(df.columns)}. Please reduce the number of columns in your CSV file.", gr.update(visible=False)
# # Check row limit (max 10,000 records)
# if len(df) > 10000:
# return None, f"β Too many records! Maximum allowed: 10,000, found: {len(df)}. Please reduce the number of rows in your CSV file.", gr.update(visible=False)
# # Check minimum requirements
# if len(df) < 1000:
# return None, f"β Too few records! Minimum required: 1,000, found: {len(df)}. Please provide more data for training.", gr.update(visible=False)
# if len(df.columns) < 2:
# return None, f"β Too few columns! Minimum required: 2, found: {len(df.columns)}. Please provide more columns for training.", gr.update(visible=False)
# Success message with file info
success_msg = f"β
File uploaded successfully! {len(df)} rows Γ {len(df.columns)} columns"
# Generate memory usage info
memory_info = generator.estimate_memory_usage(df)
return df, success_msg, gr.update(value=memory_info, visible=True)
except Exception as e:
return None, f"β Error reading file: {str(e)}", gr.update(visible=False)
file_upload.change(
process_uploaded_file,
inputs=[file_upload],
outputs=[uploaded_data, train_status, memory_info]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |