File size: 14,618 Bytes
f376d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import gradio as gr
import pandas as pd
import numpy as np
import io
import base64
from typing import Optional, Tuple
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
warnings.filterwarnings("ignore")

# Import Mostly AI SDK
try:
    from mostlyai.sdk import MostlyAI
    MOSTLY_AI_AVAILABLE = True
except ImportError:
    MOSTLY_AI_AVAILABLE = False
    print("Warning: Mostly AI SDK not available. Please install with: pip install mostlyai[local]")

class SyntheticDataGenerator:
    def __init__(self):
        self.mostly = None
        self.generator = None
        self.original_data = None
        
    def initialize_mostly_ai(self):
        """Initialize Mostly AI SDK"""
        if not MOSTLY_AI_AVAILABLE:
            return False, "Mostly AI SDK not installed. Please install with: pip install mostlyai[local]"
        
        try:
            self.mostly = MostlyAI(local=True, local_port=8080)
            return True, "Mostly AI SDK initialized successfully!"
        except Exception as e:
            return False, f"Failed to initialize Mostly AI SDK: {str(e)}"
    
    
    def train_generator(self, data: pd.DataFrame, name: str, epochs: int = 10, max_training_time: int = 60, batch_size: int = 32, value_protection: bool = True) -> Tuple[bool, str]:
        """Train the synthetic data generator"""
        if not self.mostly:
            return False, "Mostly AI SDK not initialized"
        
        try:
            self.original_data = data
            train_config = {'tables':
                            [
                                {
                                    'name': name,
                                    'data': data,
                                    'tabular_model_configuration':
                                    {
                                        'max_epochs': epochs,
                                        'max_training_time': max_training_time,
                                        'value_protection': value_protection,
                                        'batch_size': batch_size
                                    }
                                }
                            ]
                           }
                            
            self.generator = self.mostly.train(
                config = train_config
            )
            return True, f"Generator trained successfully! Model: {name}"
        except Exception as e:
            return False, f"Training failed: {str(e)}"
    
    def generate_synthetic_data(self, size: int) -> Tuple[pd.DataFrame, str]:
        """Generate synthetic data"""
        if not self.generator:
            return None, "No trained generator available"
        
        try:
            synthetic_data = self.mostly.generate(self.generator, size=size)
            df = synthetic_data.data()
            return df, f"Generated {len(df)} synthetic records successfully!"
        except Exception as e:
            return None, f"Generation failed: {str(e)}"
    
    def get_quality_report(self) -> str:
        """Get quality assurance report"""
        if not self.generator:
            return "No trained generator available"
        
        try:
            report = self.generator.reports(display=False)
            return str(report)
        except Exception as e:
            return f"Failed to generate report: {str(e)}"
    
    def estimate_memory_usage(self, df: pd.DataFrame) -> str:
        """Estimate memory usage for the dataset"""
        if df is None or df.empty:
            return "No data to analyze"
        
        # Calculate approximate memory usage
        memory_mb = df.memory_usage(deep=True).sum() / (1024 * 1024)
        rows, cols = len(df), len(df.columns)
        
        # Estimate training memory (roughly 3-5x the data size)
        estimated_training_mb = memory_mb * 4
        
        status = "βœ… Good" if memory_mb < 100 else "⚠️ Large" if memory_mb < 500 else "❌ Very Large"
        
        return f"""
**Memory Usage Estimate:**
- Data size: {memory_mb:.1f} MB
- Estimated training memory: {estimated_training_mb:.1f} MB
- Status: {status}
- Rows: {rows:,} | Columns: {cols}
        """.strip()

# Initialize the generator
generator = SyntheticDataGenerator()


def initialize_sdk() -> Tuple[str, str]:
    """Initialize the Mostly AI SDK"""
    success, message = generator.initialize_mostly_ai()
    status = "βœ… Success" if success else "❌ Error"
    return status, message

def train_model(data: pd.DataFrame, model_name: str, epochs: int, max_training_time: int, batch_size: int, value_protection: bool) -> Tuple[str, str]:
    """Train the synthetic data generator"""
    if data is None or data.empty:
        return "❌ Error", "Please upload or create sample data first"
    
    success, message = generator.train_generator(data, model_name, epochs, max_training_time, batch_size, value_protection)
    status = "βœ… Success" if success else "❌ Error"
    return status, message

def generate_data(size: int) -> Tuple[pd.DataFrame, str]:
    """Generate synthetic data"""
    if generator.generator is None:
        return None, "❌ Please train a model first"
    
    synthetic_df, message = generator.generate_synthetic_data(size)
    if synthetic_df is not None:
        status = "βœ… Success"
    else:
        status = "❌ Error"
    
    return synthetic_df, f"{status} - {message}"

def get_quality_report() -> str:
    """Get quality report"""
    return generator.get_quality_report()

def create_comparison_plot(original_df: pd.DataFrame, synthetic_df: pd.DataFrame) -> go.Figure:
    """Create comparison plots between original and synthetic data"""
    if original_df is None or synthetic_df is None:
        return None
    
    # Select numeric columns for comparison
    numeric_cols = original_df.select_dtypes(include=[np.number]).columns.tolist()
    
    if not numeric_cols:
        return None
    
    # Create subplots
    n_cols = min(3, len(numeric_cols))
    n_rows = (len(numeric_cols) + n_cols - 1) // n_cols
    
    fig = make_subplots(
        rows=n_rows, 
        cols=n_cols,
        subplot_titles=numeric_cols[:n_rows*n_cols]
    )
    
    for i, col in enumerate(numeric_cols[:n_rows*n_cols]):
        row = i // n_cols + 1
        col_idx = i % n_cols + 1
        
        # Add original data histogram
        fig.add_trace(
            go.Histogram(
                x=original_df[col],
                name=f'Original {col}',
                opacity=0.7,
                nbinsx=20
            ),
            row=row, col=col_idx
        )
        
        # Add synthetic data histogram
        fig.add_trace(
            go.Histogram(
                x=synthetic_df[col],
                name=f'Synthetic {col}',
                opacity=0.7,
                nbinsx=20
            ),
            row=row, col=col_idx
        )
    
    fig.update_layout(
        title="Original vs Synthetic Data Comparison",
        height=300 * n_rows,
        showlegend=True
    )
    
    return fig

def download_csv(df: pd.DataFrame) -> str:
    """Convert DataFrame to CSV for download"""
    if df is None or df.empty:
        return None
    
    csv = df.to_csv(index=False)
    return csv

# Create the Gradio interface
def create_interface():
    with gr.Blocks(title="MOSTLY AI Synthetic Data Generator", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # 🎭 MOSTLY AI Synthetic Data Generator
        
        Generate high-quality synthetic data using the Mostly AI SDK. Upload your own CSV files to generate synthetic data that preserves the statistical properties of your original dataset.
        """)
        
        with gr.Tab("πŸš€ Quick Start"):
            gr.Markdown("### Initialize the SDK and upload your data")
            
            with gr.Row():
                with gr.Column():
                    init_btn = gr.Button("Initialize Mostly AI SDK", variant="primary")
                    init_status = gr.Textbox(label="Initialization Status", interactive=False)
                
                with gr.Column():
                    gr.Markdown("""
                    **Next Steps:**
                    1. Initialize the SDK (click button above)
                    2. Go to "Upload Data and Train Model" tab to upload your CSV file
                    3. Train a model on your data
                    4. Generate synthetic data
                    """)
        
        with gr.Tab("πŸ“Š Upload Data and Train Model"):
            gr.Markdown("### Upload your CSV file to generate synthetic data")
            
            gr.Markdown("""
            **πŸ“‹ File Requirements:**
            - **Format:** CSV with header row
            - **Size:** Optimized for Hugging Face Spaces (2 vCPU, 16GB RAM)
            """)
            
            file_upload = gr.File(
                label="Upload CSV File",
                file_types=[".csv"],
                file_count="single"
            )
            
            uploaded_data = gr.Dataframe(label="Uploaded Data", interactive=False)
            
            memory_info = gr.Markdown(label="Memory Usage Info", visible=False)
            
            with gr.Row():
                with gr.Column():
                    model_name = gr.Textbox(
                        value="My Synthetic Model",
                        label="Model Name",
                        placeholder="Enter a name for your model"
                    )
                    epochs = gr.Slider(1, 200, value=100, step=1, label="Training Epochs")
                    max_training_time = gr.Slider(1, 1000, value=60, step=1, label="Maximum Training Time")
                    batch_size = gr.Slider(8, 1024, value=32, step=8, label="Training Batch Size")
                    value_protection = gr.Checkbox(label="Value Protection", info="Enable Value Protection")
                    train_btn = gr.Button("Train Model", variant="primary")
                
                with gr.Column():
                    train_status = gr.Textbox(label="Training Status", interactive=False)
                    quality_report = gr.Textbox(label="Quality Report", lines=10, interactive=False)
            
            get_report_btn = gr.Button("Get Quality Report", variant="secondary")
        
        with gr.Tab("🎲 Generate Data"):
            gr.Markdown("### Generate synthetic data from your trained model")
            
            with gr.Row():
                with gr.Column():
                    gen_size = gr.Slider(10, 1000, value=100, step=10, label="Number of Records to Generate")
                    generate_btn = gr.Button("Generate Synthetic Data", variant="primary")
                
                with gr.Column():
                    gen_status = gr.Textbox(label="Generation Status", interactive=False)
            
            synthetic_data = gr.Dataframe(label="Synthetic Data", interactive=False)
            
            with gr.Row():
                download_btn = gr.DownloadButton("Download CSV", variant="secondary")
                comparison_plot = gr.Plot(label="Data Comparison")
        
        # Event handlers
        init_btn.click(
            initialize_sdk,
            outputs=[init_status, init_status]
        )
        
        train_btn.click(
            train_model,
            inputs=[uploaded_data, model_name, epochs, max_training_time, batch_size, value_protection],
            outputs=[train_status, train_status]
        )
        
        get_report_btn.click(
            get_quality_report,
            outputs=[quality_report]
        )
        
        generate_btn.click(
            generate_data,
            inputs=[gen_size],
            outputs=[synthetic_data, gen_status]
        )
        
        # Update download button when synthetic data changes
        synthetic_data.change(
            download_csv,
            inputs=[synthetic_data],
            outputs=[download_btn]
        )
        
        # Create comparison plot when both datasets are available
        synthetic_data.change(
            create_comparison_plot,
            inputs=[uploaded_data, synthetic_data],
            outputs=[comparison_plot]
        )
        
        # Handle file upload with size and column limits
        def process_uploaded_file(file):
            if file is None:
                return None, "No file uploaded", gr.update(visible=False)
            
            try:
                # Read the CSV file
                df = pd.read_csv(file.name)
                
                # # Check column limit (max 20 columns)
                # if len(df.columns) > 20:
                #     return None, f"❌ Too many columns! Maximum allowed: 20, found: {len(df.columns)}. Please reduce the number of columns in your CSV file.", gr.update(visible=False)
                
                # # Check row limit (max 10,000 records)
                # if len(df) > 10000:
                #     return None, f"❌ Too many records! Maximum allowed: 10,000, found: {len(df)}. Please reduce the number of rows in your CSV file.", gr.update(visible=False)
                
                # # Check minimum requirements
                # if len(df) < 1000:
                #     return None, f"❌ Too few records! Minimum required: 1,000, found: {len(df)}. Please provide more data for training.", gr.update(visible=False)
                
                # if len(df.columns) < 2:
                #     return None, f"❌ Too few columns! Minimum required: 2, found: {len(df.columns)}. Please provide more columns for training.", gr.update(visible=False)
                
                # Success message with file info
                success_msg = f"βœ… File uploaded successfully! {len(df)} rows Γ— {len(df.columns)} columns"
                
                # Generate memory usage info
                memory_info = generator.estimate_memory_usage(df)
                
                return df, success_msg, gr.update(value=memory_info, visible=True)
                
            except Exception as e:
                return None, f"❌ Error reading file: {str(e)}", gr.update(visible=False)
        
        file_upload.change(
            process_uploaded_file,
            inputs=[file_upload],
            outputs=[uploaded_data, train_status, memory_info]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )