File size: 666 Bytes
8f4f10c
c79d190
a1f09d2
 
c79d190
528cf10
 
3e52e80
c79d190
381a2cc
1b44aaf
 
 
c79d190
381a2cc
3e52e80
381a2cc
f8438a3
3e52e80
 
381a2cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import gradio as gr
from transformers import pipeline
import os
hf_token = os.getenv("HF_TOKEN")
# Set up the pipeline
med_pipe = pipeline("text-generation", model="OpenBioLLM-70B", trust_remote_code=True)


# Define the function for generating responses
def generate_response(input_text):
    if not input_text.strip():
        return "Please enter some text to generate a response."
    
    response = pipe(input_text, max_new_tokens=150, do_sample=True)[0]["generated_text"]
    return response

# Gradio interface
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="Flmc/DISC-MedLLM")

if __name__ == "__main__":
    iface.launch()