miso1234456 commited on
Commit
c79d190
·
verified ·
1 Parent(s): 9b2f273

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -14
app.py CHANGED
@@ -1,23 +1,15 @@
1
- import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
- import torch
4
 
5
- # Load the model and tokenizer with trust_remote_code=True
6
- model_name = "Flmc/DISC-MedLLM"
7
- tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
8
- model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
9
 
10
- # Function to generate responses
11
  def generate_response(input_text):
12
  if not input_text.strip():
13
  return "Please enter some text to generate a response."
14
 
15
- inputs = tokenizer(input_text, return_tensors="pt")
16
- if torch.cuda.is_available():
17
- inputs = inputs.to("cuda")
18
- model.to("cuda")
19
- outputs = model.generate(**inputs, max_new_tokens=150)
20
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
21
  return response
22
 
23
  # Gradio interface
 
1
+ \import gradio as gr
2
+ from transformers import pipeline
 
3
 
4
+ # Set up the pipeline
5
+ pipe = pipeline("text-generation", model="Flmc/DISC-MedLLM", trust_remote_code=True)
 
 
6
 
7
+ # Define the function for generating responses
8
  def generate_response(input_text):
9
  if not input_text.strip():
10
  return "Please enter some text to generate a response."
11
 
12
+ response = pipe(input_text, max_new_tokens=150, do_sample=True)[0]["generated_text"]
 
 
 
 
 
13
  return response
14
 
15
  # Gradio interface