miso1234456 commited on
Commit
1b44aaf
·
verified ·
1 Parent(s): f8438a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -2
app.py CHANGED
@@ -1,14 +1,21 @@
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
3
 
4
- # Load the model and tokenizer
5
  model_name = "Flmc/DISC-MedLLM"
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
8
 
9
  # Function to generate responses
10
  def generate_response(input_text):
11
- inputs = tokenizer(input_text, return_tensors="pt").to("cuda") # Use GPU if available
 
 
 
 
 
 
12
  outputs = model.generate(**inputs, max_new_tokens=150)
13
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
14
  return response
 
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
 
5
+ # Load the model and tokenizer with authentication token if needed
6
  model_name = "Flmc/DISC-MedLLM"
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
9
 
10
  # Function to generate responses
11
  def generate_response(input_text):
12
+ if not input_text.strip():
13
+ return "Please enter some text to generate a response."
14
+
15
+ inputs = tokenizer(input_text, return_tensors="pt")
16
+ if torch.cuda.is_available():
17
+ inputs = inputs.to("cuda")
18
+ model.to("cuda")
19
  outputs = model.generate(**inputs, max_new_tokens=150)
20
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
21
  return response