Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
3 |
|
4 |
-
# Load the model and tokenizer
|
5 |
model_name = "Flmc/DISC-MedLLM"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
8 |
|
9 |
# Function to generate responses
|
10 |
def generate_response(input_text):
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
outputs = model.generate(**inputs, max_new_tokens=150)
|
13 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
return response
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load the model and tokenizer with authentication token if needed
|
6 |
model_name = "Flmc/DISC-MedLLM"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
9 |
|
10 |
# Function to generate responses
|
11 |
def generate_response(input_text):
|
12 |
+
if not input_text.strip():
|
13 |
+
return "Please enter some text to generate a response."
|
14 |
+
|
15 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
inputs = inputs.to("cuda")
|
18 |
+
model.to("cuda")
|
19 |
outputs = model.generate(**inputs, max_new_tokens=150)
|
20 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
return response
|