Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,725 Bytes
a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 a1b7c96 a2a6795 dde52b8 78fcdc5 dde52b8 a1b7c96 a2a6795 a1b7c96 a2a6795 711aaa4 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 a1b7c96 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 e37bc45 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 dde52b8 a2a6795 e37bc45 dde52b8 a2a6795 dde52b8 a2a6795 dde52b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import AutoImageProcessor, AutoModel
import torch.nn.functional as F
import spaces
DINO_MODELS = {
"DINOv3 Base ViT": "facebook/dinov3-vitb16-pretrain-lvd1689m",
"DINOv3 Large ViT": "facebook/dinov3-vitl16-pretrain-lvd1689m",
"DINOv3 Large ConvNeXT": "facebook/dinov3-convnext-large-pretrain-lvd1689m",
}
_default_model_name = "DINOv3 Base ViT"
processor = AutoImageProcessor.from_pretrained(DINO_MODELS[_default_model_name])
def load_model(model_name):
global processor
model_path = DINO_MODELS[model_name]
processor = AutoImageProcessor.from_pretrained(model_path)
return f"β
Model '{model_name}' loaded successfully!"
@spaces.GPU()
def extract_features(image, model_name):
model_id = DINO_MODELS[model_name]
model = AutoModel.from_pretrained(model_id).to("cuda").eval()
local_processor = AutoImageProcessor.from_pretrained(model_id)
inputs = local_processor(images=image, return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
model_size = local_processor.size["height"]
original_size = image.size
with torch.no_grad():
outputs = model(**inputs)
features = outputs.last_hidden_state
num_register_tokens = getattr(model.config, "num_register_tokens", 0)
return features[:, 1 + num_register_tokens:, :].float().cpu(), original_size, model_size
def find_correspondences(features1, features2, threshold=0.8):
device = torch.device("cpu")
B, N1, D = features1.shape
_, N2, _ = features2.shape
features1_norm = F.normalize(features1, dim=-1)
features2_norm = F.normalize(features2, dim=-1)
similarity = torch.matmul(features1_norm, features2_norm.transpose(-2, -1))
matches1 = torch.argmax(similarity, dim=-1)
matches2 = torch.argmax(similarity, dim=-2)
max_sim1 = torch.max(similarity, dim=-1)[0]
arange1 = torch.arange(N1, device=device)
mutual_matches = matches2[0, matches1[0]] == arange1
good_matches = (max_sim1[0] > threshold) & mutual_matches
return matches1[0][good_matches].cpu(), arange1[good_matches].cpu(), max_sim1[0][good_matches].cpu()
def patch_to_image_coords(patch_idx, original_size, model_size, patch_size=14):
orig_w, orig_h = original_size
patches_h = model_size // patch_size
patches_w = model_size // patch_size
if patch_idx >= patches_h * patches_w:
return None, None
patch_y = patch_idx // patches_w
patch_x = patch_idx % patches_w
y_model = patch_y * patch_size + patch_size // 2
x_model = patch_x * patch_size + patch_size // 2
x = int(x_model * orig_w / model_size)
y = int(y_model * orig_h / model_size)
return x, y
def match_keypoints(image1, image2, model_name):
if image1 is None or image2 is None:
return None
load_model(model_name)
img1_pil = Image.fromarray(image1).convert("RGB")
img2_pil = Image.fromarray(image2).convert("RGB")
features1, original_size1, model_size1 = extract_features(img1_pil, model_name)
features2, original_size2, model_size2 = extract_features(img2_pil, model_name)
matches2_idx, matches1_idx, similarities = find_correspondences(features1, features2, threshold=0.7)
img1_np = np.array(img1_pil)
img2_np = np.array(img2_pil)
h1, w1 = img1_np.shape[:2]
h2, w2 = img2_np.shape[:2]
result_img = np.zeros((max(h1, h2), w1 + w2, 3), dtype=np.uint8)
result_img[:h1, :w1] = img1_np
result_img[:h2, w1:w1 + w2] = img2_np
for m1, m2, _ in zip(matches1_idx, matches2_idx, similarities):
x1, y1 = patch_to_image_coords(int(m1), original_size1, model_size1)
x2, y2 = patch_to_image_coords(int(m2), original_size2, model_size2)
if x1 is not None and x2 is not None:
color = tuple(np.random.randint(0, 255, size=3).tolist())
cv2.circle(result_img, (x1, y1), 6, color, -1)
cv2.circle(result_img, (x2 + w1, y2), 6, color, -1)
cv2.line(result_img, (x1, y1), (x2 + w1, y2), color, 2)
return result_img
with gr.Blocks(title="DINOv3 Keypoint Matching") as demo:
gr.Markdown("# DINOv3 For Keypoint Matching")
gr.Markdown("DINOv3 can be used to find matching features between two images.")
gr.Markdown("Upload two images to find corresponding keypoints using DINOv3 features, switch between different DINOv3 checkpoints.")
with gr.Row():
with gr.Column(scale=1):
with gr.Row(scale=1):
image1 = gr.Image(label="Image 1", type="numpy")
image2 = gr.Image(label="Image 2", type="numpy")
model_selector = gr.Dropdown(
choices=list(DINO_MODELS.keys()),
value=_default_model_name,
label="Select DINOv3 Model",
info="Choose the model size. Larger models may provide better features but require more memory.",
)
status_bar = gr.Textbox(
value=f"β
Model '{_default_model_name}' ready.",
label="Status",
interactive=False,
container=False,
)
match_btn = gr.Button("Find Correspondences", variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label="Matched Keypoints")
model_selector.change(fn=load_model, inputs=[model_selector], outputs=[status_bar])
match_btn.click(fn=match_keypoints, inputs=[image1, image2, model_selector], outputs=[output_image])
gr.Examples(
examples=[["map.jpg", "street.jpg"], ["bee.JPG", "bee_edited.jpg"]],
inputs=[image1, image2],
)
if __name__ == "__main__":
demo.launch()
|