Spaces:
Running
on
Zero
Running
on
Zero
carry model within decorator
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ from transformers import AutoImageProcessor, AutoModel
|
|
7 |
import torch.nn.functional as F
|
8 |
import spaces
|
9 |
|
10 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
12 |
DINO_MODELS = {
|
13 |
"DINOv3 Base ViT": "facebook/dinov3-vitb16-pretrain-lvd1689m",
|
@@ -22,13 +21,15 @@ def load_model(model_name):
|
|
22 |
|
23 |
processor = AutoImageProcessor.from_pretrained(model_path)
|
24 |
model = AutoModel.from_pretrained(model_path)
|
25 |
-
model = model.to(device)
|
26 |
return f"✅ Model '{model_name}' loaded successfully!"
|
27 |
|
28 |
load_model("DINOv3 Base ViT")
|
29 |
|
30 |
@spaces.GPU()
|
31 |
def extract_features(image):
|
|
|
|
|
|
|
32 |
original_size = image.size
|
33 |
inputs = processor(images=image, return_tensors="pt")
|
34 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
7 |
import torch.nn.functional as F
|
8 |
import spaces
|
9 |
|
|
|
10 |
|
11 |
DINO_MODELS = {
|
12 |
"DINOv3 Base ViT": "facebook/dinov3-vitb16-pretrain-lvd1689m",
|
|
|
21 |
|
22 |
processor = AutoImageProcessor.from_pretrained(model_path)
|
23 |
model = AutoModel.from_pretrained(model_path)
|
|
|
24 |
return f"✅ Model '{model_name}' loaded successfully!"
|
25 |
|
26 |
load_model("DINOv3 Base ViT")
|
27 |
|
28 |
@spaces.GPU()
|
29 |
def extract_features(image):
|
30 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
|
32 |
+
model = model.to(device)
|
33 |
original_size = image.size
|
34 |
inputs = processor(images=image, return_tensors="pt")
|
35 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|