Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import pickle | |
#from scipy import stats | |
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PolynomialFeatures | |
from sklearn.linear_model import Ridge, ElasticNet, LinearRegression, Lasso | |
from sklearn.model_selection import train_test_split | |
#import sweetviz as sv | |
#import dtale | |
import gradio as gr | |
# # Load the dataset | |
# df = pd.read_csv('ebw_data.csv') | |
# X = df.drop(['Width', 'Depth'], axis=1) | |
# y = df[['Width', 'Depth']] | |
# # Разделим данные на трэйн и тест | |
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) | |
# # Создайте экземпляр модели линейной регрессии. | |
# model = LinearRegression() | |
# # Фитим | |
# model.fit(X_train, y_train) | |
# # Предиктим | |
# y_pred = model.predict(X_test) | |
# # Оценка производительности модели | |
# score = model.score(X_test, y_test) | |
# #print('Accuracy:', score) | |
filename = 'finalized_model.sav' | |
model = pickle.load(open(filename, 'rb')) | |
#result = loaded_model.score(X_test, Y_test) | |
# print(result) | |
def greet(IW, IF, VW, FP): | |
X_new = pd.DataFrame({'IW': [IW], 'IF': [IF], 'VW': [VW], 'FP': [FP]}) | |
y_predd = model.predict(X_new) | |
arr_reshaped = np.reshape(y_predd, (2, 1)) | |
arr1, arr2 = np.split(arr_reshaped, 2) | |
value1 = arr1[0] | |
value2 = arr2[0] | |
return value1, value2 | |
inputs = [gr.Slider(43, 49), gr.Slider(131, 150), gr.Slider(4.5, 10), gr.Slider(50, 125)] | |
outputs = [gr.Number(label="Width"), gr.Number(label="Depth")] | |
demo = gr.Interface( | |
fn=greet, | |
inputs=inputs, | |
outputs=outputs, | |
title="Predict Depth and Width" | |
) | |
demo.launch() |