mardrake commited on
Commit
3cc4d55
·
1 Parent(s): 9e3f1b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -15
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import pandas as pd
2
  import numpy as np
 
3
  #from scipy import stats
4
  from sklearn.preprocessing import MinMaxScaler, StandardScaler, PolynomialFeatures
5
  from sklearn.linear_model import Ridge, ElasticNet, LinearRegression, Lasso
@@ -8,27 +9,32 @@ from sklearn.model_selection import train_test_split
8
  #import dtale
9
  import gradio as gr
10
 
11
- # Load the dataset
12
- df = pd.read_csv('ebw_data.csv')
13
 
14
- X = df.drop(['Width', 'Depth'], axis=1)
15
- y = df[['Width', 'Depth']]
16
 
17
- # Разделим данные на трэйн и тест
18
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
19
 
20
- # Создайте экземпляр модели линейной регрессии.
21
- model = LinearRegression()
22
 
23
- # Фитим
24
- model.fit(X_train, y_train)
25
 
26
- # Предиктим
27
- y_pred = model.predict(X_test)
 
 
 
 
 
 
 
 
28
 
29
- # Оценка производительности модели
30
- score = model.score(X_test, y_test)
31
- #print('Accuracy:', score)
32
  def greet(IW, IF, VW, FP):
33
  X_new = pd.DataFrame({'IW': [IW], 'IF': [IF], 'VW': [VW], 'FP': [FP]})
34
  y_predd = model.predict(X_new)
 
1
  import pandas as pd
2
  import numpy as np
3
+ import pickle
4
  #from scipy import stats
5
  from sklearn.preprocessing import MinMaxScaler, StandardScaler, PolynomialFeatures
6
  from sklearn.linear_model import Ridge, ElasticNet, LinearRegression, Lasso
 
9
  #import dtale
10
  import gradio as gr
11
 
12
+ # # Load the dataset
13
+ # df = pd.read_csv('ebw_data.csv')
14
 
15
+ # X = df.drop(['Width', 'Depth'], axis=1)
16
+ # y = df[['Width', 'Depth']]
17
 
18
+ # # Разделим данные на трэйн и тест
19
+ # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
20
 
21
+ # # Создайте экземпляр модели линейной регрессии.
22
+ # model = LinearRegression()
23
 
24
+ # # Фитим
25
+ # model.fit(X_train, y_train)
26
 
27
+ # # Предиктим
28
+ # y_pred = model.predict(X_test)
29
+
30
+ # # Оценка производительности модели
31
+ # score = model.score(X_test, y_test)
32
+ # #print('Accuracy:', score)
33
+ filename = 'finalized_model.sav'
34
+ model = pickle.load(open(filename, 'rb'))
35
+ #result = loaded_model.score(X_test, Y_test)
36
+ # print(result)
37
 
 
 
 
38
  def greet(IW, IF, VW, FP):
39
  X_new = pd.DataFrame({'IW': [IW], 'IF': [IF], 'VW': [VW], 'FP': [FP]})
40
  y_predd = model.predict(X_new)