Spaces:
Sleeping
Sleeping
File size: 1,701 Bytes
d1a1266 a48937b 3cc4d55 0cdc28e d1a1266 0cdc28e d1a1266 3cc4d55 d1a1266 3cc4d55 d1a1266 3cc4d55 d1a1266 3cc4d55 d1a1266 3cc4d55 d1a1266 3cc4d55 d1a1266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import pandas as pd
import numpy as np
import pickle
#from scipy import stats
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PolynomialFeatures
from sklearn.linear_model import Ridge, ElasticNet, LinearRegression, Lasso
from sklearn.model_selection import train_test_split
#import sweetviz as sv
#import dtale
import gradio as gr
# # Load the dataset
# df = pd.read_csv('ebw_data.csv')
# X = df.drop(['Width', 'Depth'], axis=1)
# y = df[['Width', 'Depth']]
# # Разделим данные на трэйн и тест
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# # Создайте экземпляр модели линейной регрессии.
# model = LinearRegression()
# # Фитим
# model.fit(X_train, y_train)
# # Предиктим
# y_pred = model.predict(X_test)
# # Оценка производительности модели
# score = model.score(X_test, y_test)
# #print('Accuracy:', score)
filename = 'finalized_model.sav'
model = pickle.load(open(filename, 'rb'))
#result = loaded_model.score(X_test, Y_test)
# print(result)
def greet(IW, IF, VW, FP):
X_new = pd.DataFrame({'IW': [IW], 'IF': [IF], 'VW': [VW], 'FP': [FP]})
y_predd = model.predict(X_new)
arr_reshaped = np.reshape(y_predd, (2, 1))
arr1, arr2 = np.split(arr_reshaped, 2)
value1 = arr1[0]
value2 = arr2[0]
return value1, value2
inputs = [gr.Slider(43, 49), gr.Slider(131, 150), gr.Slider(4.5, 10), gr.Slider(50, 125)]
outputs = [gr.Number(label="Width"), gr.Number(label="Depth")]
demo = gr.Interface(
fn=greet,
inputs=inputs,
outputs=outputs,
title="Predict Depth and Width"
)
demo.launch() |