File size: 24,401 Bytes
9ae8d89
 
 
 
7f29568
fc21df8
 
 
 
9ae8d89
 
fc21df8
 
 
9ae8d89
 
 
fc21df8
 
 
 
 
 
 
 
 
 
 
9ae8d89
fc21df8
9ae8d89
fc21df8
 
 
 
 
9ae8d89
 
 
 
09b313f
fc21df8
9ae8d89
fc21df8
 
 
 
 
9ae8d89
 
fc21df8
7f29568
 
09b313f
0da5ee3
0a14325
553b217
 
 
fb84311
 
d83f3a1
 
 
 
 
 
 
 
fc21df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f29568
fc21df8
9ae8d89
fc21df8
 
9ae8d89
fc21df8
 
 
09b313f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8147b8
09b313f
 
 
 
 
d8147b8
 
 
 
 
12f8259
d8147b8
12f8259
d8147b8
 
fc21df8
09b313f
 
 
 
6616540
09b313f
 
 
 
 
 
 
fc21df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae8d89
fc21df8
9ae8d89
85b4142
9ae8d89
fc21df8
9ae8d89
09b313f
d83f3a1
 
fc21df8
 
 
1d6f829
d83f3a1
 
 
fc21df8
d83f3a1
 
fc21df8
 
 
 
0da5ee3
d83f3a1
 
 
 
 
fc21df8
fb84311
3c09632
fc21df8
 
 
 
553b217
3df6003
 
fc21df8
3df6003
fc21df8
3df6003
fc21df8
 
fb84311
5c80286
fc21df8
 
 
 
 
 
553b217
fc21df8
 
 
 
 
553b217
fc21df8
930ed8c
fb84311
 
fc21df8
 
 
 
 
 
fb84311
fc21df8
 
 
 
 
fb84311
 
 
fc21df8
 
 
 
fb84311
 
 
fc21df8
fb84311
fc21df8
 
930ed8c
fc21df8
 
 
 
 
 
930ed8c
fc21df8
 
 
 
 
 
930ed8c
 
fb84311
09b313f
96ca081
 
b3eff40
fb84311
fc21df8
9ae8d89
fc21df8
 
 
 
 
 
 
 
9ae8d89
 
 
 
 
b3eff40
9ae8d89
 
 
 
 
 
 
 
 
b3eff40
 
 
 
671e1a6
b3eff40
9ae8d89
b3eff40
 
 
9ae8d89
b3eff40
671e1a6
b3eff40
 
 
 
 
 
 
 
 
 
 
 
 
9ae8d89
 
 
 
 
 
 
b3eff40
9ae8d89
 
b3eff40
 
 
 
9ae8d89
 
 
 
 
 
fc21df8
9ae8d89
 
 
 
 
 
 
fc21df8
9ae8d89
fc21df8
9ae8d89
fc21df8
ab3166d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import time
import functools
import gc

import os

from src.about import (
    CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT_1, LLM_BENCHMARKS_TEXT_2, CROSS_EVALUATION_METRICS,
    NOTE_GENERATION_METRICS, HEALTHBENCH_METRICS, TITLE, LOGO, FIVE_PILLAR_DIAGRAM
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    DATASET_BENCHMARK_COLS, OPEN_ENDED_BENCHMARK_COLS, MED_SAFETY_BENCHMARK_COLS,
    MEDICAL_SUMMARIZATION_BENCHMARK_COLS, ACI_BENCHMARK_COLS, SOAP_BENCHMARK_COLS,
    HEALTHBENCH_BENCHMARK_COLS, HEALTHBENCH_HARD_BENCHMARK_COLS, DATASET_COLS,
    OPEN_ENDED_COLS, MED_SAFETY_COLS, MEDICAL_SUMMARIZATION_COLS, ACI_COLS, SOAP_COLS,
    HEALTHBENCH_COLS, HEALTHBENCH_HARD_COLS, EVAL_COLS, EVAL_TYPES, NUMERIC_INTERVALS,
    TYPES, AutoEvalColumn, ModelType, Precision, WeightType, fields, render_generation_templates,
    OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, OpenEndedFrench_COLS,
    OpenEndedFrench_BENCHMARK_COLS, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS,
    OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, OpenEndedGreek_COLS,
    OpenEndedGreek_BENCHMARK_COLS, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS,
    ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

# =====================================================================================
# 1. SETUP AND DATA LOADING 
# =====================================================================================

def restart_space():
    API.restart_space(repo_id=REPO_ID)


print("Downloading evaluation data...")
try:
    snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", token=TOKEN)
    snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", token=TOKEN)
    print("Downloads complete.")
except Exception as e:
    print(f"An error occurred during download: {e}")
    restart_space()

print("Loading all dataframes into a central dictionary...")
start_time = time.time()

_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
_, med_safety_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MED_SAFETY_COLS, MED_SAFETY_BENCHMARK_COLS, "score", "med_safety")
_, medical_summarization_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MEDICAL_SUMMARIZATION_COLS, MEDICAL_SUMMARIZATION_BENCHMARK_COLS, "score", "medical_summarization")
_, aci_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ACI_COLS, ACI_BENCHMARK_COLS, "score", "aci")
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
_, healthbench_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, HEALTHBENCH_COLS, HEALTHBENCH_BENCHMARK_COLS, "score", "healthbench")
_, healthbench_hard_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, HEALTHBENCH_HARD_COLS, HEALTHBENCH_HARD_BENCHMARK_COLS, "score", "healthbench_hard")
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
_, open_ended_romanian_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, "score", "open_ended_romanian")
_, open_ended_greek_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedGreek_COLS, OpenEndedGreek_BENCHMARK_COLS, "score", "open_ended_greek")
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")

ALL_DATASETS = {
    "datasets": harness_datasets_original_df,
    "open_ended": open_ended_original_df,
    "med_safety": med_safety_original_df,
    "medical_summarization": medical_summarization_original_df,
    "aci": aci_original_df,
    "soap": soap_original_df,
    "healthbench": healthbench_original_df,
    "healthbench_hard": healthbench_hard_original_df,
    "open_ended_arabic": open_ended_arabic_df,
    "open_ended_french": open_ended_french_df,
    "open_ended_portuguese": open_ended_portuguese_df,
    "open_ended_romanian": open_ended_romanian_df,
    "open_ended_greek": open_ended_greek_df,
    "open_ended_spanish": open_ended_spanish_df,
    "closed_ended_multilingual": closed_ended_multilingual_df,
}
end_time = time.time()
print(f"Dataframes loaded in {end_time - start_time:.2f} seconds.")

# Evaluation Queue DataFrames
(finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

# =====================================================================================
# 2. EFFICIENT FILTERING LOGIC
# =====================================================================================

def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]

def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[
                    AutoEvalColumn.model.name,
                ]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:

    filtered_df = df

    if type_query is not None:
        type_name = [t.split(" ")[1] for t in type_query]
        filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type.name].isin(type_name)]

    if domain_specific_query is not None:
        domain_specifics = []
        if "πŸ₯  Clinical models" in domain_specific_query:
            domain_specifics.append(True)
        if "Generic models" in domain_specific_query:
            domain_specifics.append(False)
        filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]

    if precision_query is not None:
        if AutoEvalColumn.precision.name in df.columns:
            filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    if size_query is not None:
        numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
        params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
        mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
        filtered_df = filtered_df.loc[mask]

    return filtered_df

def get_filtered_table(
    shown_columns: list,
    query: str,
    domain_specific_query: list,
    size_query: list,
    *, # force subset_name to be a keyword-only argument
    subset_name: str
):
    original_df = ALL_DATASETS[subset_name]
    
    type_query = None 
    filtered_df = filter_models(original_df, type_query, domain_specific_query, size_query, None, False)
    filtered_df = filter_queries(query, filtered_df)

    always_here_cols = [AutoEvalColumn.model.name]
    available_cols = [c for c in shown_columns if c in filtered_df.columns]
    final_df = filtered_df[always_here_cols + available_cols]

    del filtered_df
    gc.collect()

    
    return final_df

# =====================================================================================
# 3. REUSABLE UI CREATION FUNCTION
# =====================================================================================

def create_leaderboard_ui(subset_name: str, column_choices: list, default_columns: list):
    """Creates a full leaderboard UI block for a given subset."""
    with gr.Row():
        with gr.Column():
            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder=f"πŸ” Search for models...",
                    show_label=False,
                    elem_id=f"search-bar-{subset_name}",
                )
            with gr.Row():
                shown_columns = gr.CheckboxGroup(
                    choices=column_choices,
                    value=default_columns,
                    label="Select columns to show",
                    elem_id=f"column-select-{subset_name}",
                    interactive=True,
                )
        with gr.Column(min_width=320):
            filter_domain_specific = gr.CheckboxGroup(
                label="Domain Specificity",
                choices=["πŸ₯ Clinical models", "Generic models"],
                value=["πŸ₯ Clinical models", "Generic models"],
                interactive=True,
                elem_id=f"filter-domain-{subset_name}",
            )
            filter_columns_size = gr.CheckboxGroup(
                label="Model sizes (in billions of parameters)",
                choices=list(NUMERIC_INTERVALS.keys()),
                value=list(NUMERIC_INTERVALS.keys()),
                interactive=True,
                elem_id=f"filter-size-{subset_name}",
            )
    
    update_fn = functools.partial(get_filtered_table, subset_name=subset_name)

    initial_df = update_fn(
        shown_columns=default_columns,
        query="",
        domain_specific_query=["πŸ₯ Clinical models", "Generic models"],
        size_query=list(NUMERIC_INTERVALS.keys())
    )

    leaderboard_table = gr.Dataframe(
        value=initial_df,
        headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + default_columns,
        datatype=TYPES,
        elem_id=f"leaderboard-table-{subset_name}",
        interactive=False,
    )

    inputs = [shown_columns, search_bar, filter_domain_specific, filter_columns_size]
    
    # Attach listeners to all input components
    for component in inputs:
        if isinstance(component, gr.Textbox):
            component.submit(update_fn, inputs, leaderboard_table)
        else:
            component.change(update_fn, inputs, leaderboard_table)

    return leaderboard_table

# =====================================================================================
# 4. GRADIO DEMO UI (Main application layout)
# =====================================================================================

demo = gr.Blocks(css=custom_css)

with demo:
    gr.HTML(LOGO)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
            with gr.Tabs(elem_classes="tab-buttons6") as language_tabs:
                LANGUAGES = {
                    "πŸ‡ΊπŸ‡Έ English": "open_ended", "πŸ‡¦πŸ‡ͺ Arabic": "open_ended_arabic",
                    "πŸ‡«πŸ‡· French": "open_ended_french", "πŸ‡ͺπŸ‡Έ Spanish": "open_ended_spanish",
                    "πŸ‡΅πŸ‡Ή Portuguese": "open_ended_portuguese", "πŸ‡·πŸ‡΄ Romanian": "open_ended_romanian",
                    "πŸ‡¬πŸ‡· Greek": "open_ended_greek",
                }
                for idx, (label, subset) in enumerate(LANGUAGES.items()):
                    with gr.TabItem(label, elem_id=f"llm-benchmark-tab-open-{subset}", id=idx):
                        judge_text = "**Note:** Llama 3.1 70B Instruct has been used as judge for English." if label == "πŸ‡ΊπŸ‡Έ English" else "**Note:** Qwen 2.5 72B Instruct has been used as judge for this language."
                        gr.Markdown(judge_text, elem_classes="markdown-text")
                        
                        create_leaderboard_ui(
                            subset_name=subset,
                            column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
                            default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)]
                        )
                        with gr.Accordion("πŸ’¬ Generation templates", open=False):
                            with gr.Accordion("Response generation", open=False):
                                render_generation_templates(task="open_ended", generation_type="response_generation")
                            with gr.Accordion("Scoring Rubric", open=False):
                                render_generation_templates(task="open_ended", generation_type="scoring_rubric")
        
        with gr.TabItem("πŸ… Medical Summarization", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
            create_leaderboard_ui(
                subset_name="medical_summarization",
                column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)],
                default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)]
            )
            with gr.Accordion("πŸ’¬ Generation templates", open=False):
                with gr.Accordion("Response generation", open=False):
                    render_generation_templates(task="medical_summarization", generation_type="response_generation")
                with gr.Accordion("Question generation", open=False):
                    render_generation_templates(task="ce", generation_type="question_generation")
                with gr.Accordion("Cross Examination", open=False):
                    render_generation_templates(task="ce", generation_type="cross_examination")
                    
        with gr.TabItem("πŸ… Note generation", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
            with gr.Tabs(elem_classes="tab-buttons2"):
                with gr.TabItem("ACI Bench", id=0):
                    create_leaderboard_ui(
                        subset_name="aci",
                        column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)],
                        default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)]
                    )
                with gr.TabItem("SOAP Notes", id=1):
                    create_leaderboard_ui(
                        subset_name="soap",
                        column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)],
                        default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)]
                    )
            # Add accordions for this section if needed, similar to other tabs
        
        with gr.TabItem("πŸ… HealthBench", elem_id="llm-benchmark-tab-table", id=4):
            gr.Markdown(HEALTHBENCH_METRICS, elem_classes="markdown-text")
            with gr.Tabs(elem_classes="tab-buttons2"):
                with gr.TabItem("HealthBench", id=0):
                    create_leaderboard_ui(
                        subset_name="healthbench",
                        column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_col)],
                        default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_col)]
                    )
                with gr.TabItem("HealthBench-Hard", id=1):
                    create_leaderboard_ui(
                        subset_name="healthbench_hard",
                        column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_hard_col)],
                        default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_hard_col)]
                    )

        with gr.TabItem("πŸ… Med Safety", elem_id="llm-benchmark-tab-table", id=5):
            create_leaderboard_ui(
                subset_name="med_safety",
                column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)],
                default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)]
            )
            with gr.Accordion("πŸ’¬ Generation templates", open=False):
                with gr.Accordion("Response generation", open=False):
                    render_generation_templates(task="med_safety", generation_type="response_generation")
                with gr.Accordion("Scoring Rubric", open=False):
                    render_generation_templates(task="med_safety", generation_type="scoring_rubric")
        
        with gr.TabItem("πŸ… Closed Ended Evaluation", elem_id="llm-benchmark-tab-closed", id=6):
            with gr.Tabs(elem_classes="tab-buttons2"):
                with gr.TabItem("English", id=0):
                    create_leaderboard_ui(
                        subset_name="datasets",
                        column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
                        default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)]
                    )
                with gr.TabItem("🌍 Multilingual", id=1):
                    gr.Markdown("πŸ“Š **Dataset Information:** This tab uses the Global MMLU dataset filtering only the subcategory: medical (10.7%)")
                    create_leaderboard_ui(
                        subset_name="closed_ended_multilingual",
                        column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
                        default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)]
                    )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=7):
            gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
            gr.HTML(FIVE_PILLAR_DIAGRAM)
            gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
            
        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=8):
            
            with gr.Column():
                gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
                with gr.Accordion(f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
                    gr.Dataframe(value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
                with gr.Accordion(f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
                    gr.Dataframe(value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
                with gr.Accordion(f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
                    gr.Dataframe(value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
            
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")                    
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="auto",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value=WeightType.Original.value.name,
                        interactive=False,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", interactive=False)
            with gr.Row():
                domain_specific_toggle = gr.Checkbox(
                    label="Domain specific", 
                    value=False,
                    info="Is your model medically oriented?",
                )
                chat_template_toggle = gr.Checkbox(
                    label="Use chat template", 
                    value=False,
                    info="Is your model a chat model?",
                )

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    model_type,
                    domain_specific_toggle,
                    chat_template_toggle,
                    precision,
                    weight_type
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )


scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=86400) 
scheduler.start()

demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'], share=True , ssr_mode=False)