File size: 24,401 Bytes
9ae8d89 7f29568 fc21df8 9ae8d89 fc21df8 9ae8d89 fc21df8 9ae8d89 fc21df8 9ae8d89 fc21df8 9ae8d89 09b313f fc21df8 9ae8d89 fc21df8 9ae8d89 fc21df8 7f29568 09b313f 0da5ee3 0a14325 553b217 fb84311 d83f3a1 fc21df8 7f29568 fc21df8 9ae8d89 fc21df8 9ae8d89 fc21df8 09b313f d8147b8 09b313f d8147b8 12f8259 d8147b8 12f8259 d8147b8 fc21df8 09b313f 6616540 09b313f fc21df8 9ae8d89 fc21df8 9ae8d89 85b4142 9ae8d89 fc21df8 9ae8d89 09b313f d83f3a1 fc21df8 1d6f829 d83f3a1 fc21df8 d83f3a1 fc21df8 0da5ee3 d83f3a1 fc21df8 fb84311 3c09632 fc21df8 553b217 3df6003 fc21df8 3df6003 fc21df8 3df6003 fc21df8 fb84311 5c80286 fc21df8 553b217 fc21df8 553b217 fc21df8 930ed8c fb84311 fc21df8 fb84311 fc21df8 fb84311 fc21df8 fb84311 fc21df8 fb84311 fc21df8 930ed8c fc21df8 930ed8c fc21df8 930ed8c fb84311 09b313f 96ca081 b3eff40 fb84311 fc21df8 9ae8d89 fc21df8 9ae8d89 b3eff40 9ae8d89 b3eff40 671e1a6 b3eff40 9ae8d89 b3eff40 9ae8d89 b3eff40 671e1a6 b3eff40 9ae8d89 b3eff40 9ae8d89 b3eff40 9ae8d89 fc21df8 9ae8d89 fc21df8 9ae8d89 fc21df8 9ae8d89 fc21df8 ab3166d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import time
import functools
import gc
import os
from src.about import (
CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT_1, LLM_BENCHMARKS_TEXT_2, CROSS_EVALUATION_METRICS,
NOTE_GENERATION_METRICS, HEALTHBENCH_METRICS, TITLE, LOGO, FIVE_PILLAR_DIAGRAM
)
from src.display.css_html_js import custom_css
from src.display.utils import (
DATASET_BENCHMARK_COLS, OPEN_ENDED_BENCHMARK_COLS, MED_SAFETY_BENCHMARK_COLS,
MEDICAL_SUMMARIZATION_BENCHMARK_COLS, ACI_BENCHMARK_COLS, SOAP_BENCHMARK_COLS,
HEALTHBENCH_BENCHMARK_COLS, HEALTHBENCH_HARD_BENCHMARK_COLS, DATASET_COLS,
OPEN_ENDED_COLS, MED_SAFETY_COLS, MEDICAL_SUMMARIZATION_COLS, ACI_COLS, SOAP_COLS,
HEALTHBENCH_COLS, HEALTHBENCH_HARD_COLS, EVAL_COLS, EVAL_TYPES, NUMERIC_INTERVALS,
TYPES, AutoEvalColumn, ModelType, Precision, WeightType, fields, render_generation_templates,
OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, OpenEndedFrench_COLS,
OpenEndedFrench_BENCHMARK_COLS, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS,
OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, OpenEndedGreek_COLS,
OpenEndedGreek_BENCHMARK_COLS, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS,
ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# =====================================================================================
# 1. SETUP AND DATA LOADING
# =====================================================================================
def restart_space():
API.restart_space(repo_id=REPO_ID)
print("Downloading evaluation data...")
try:
snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", token=TOKEN)
snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", token=TOKEN)
print("Downloads complete.")
except Exception as e:
print(f"An error occurred during download: {e}")
restart_space()
print("Loading all dataframes into a central dictionary...")
start_time = time.time()
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
_, med_safety_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MED_SAFETY_COLS, MED_SAFETY_BENCHMARK_COLS, "score", "med_safety")
_, medical_summarization_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MEDICAL_SUMMARIZATION_COLS, MEDICAL_SUMMARIZATION_BENCHMARK_COLS, "score", "medical_summarization")
_, aci_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ACI_COLS, ACI_BENCHMARK_COLS, "score", "aci")
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
_, healthbench_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, HEALTHBENCH_COLS, HEALTHBENCH_BENCHMARK_COLS, "score", "healthbench")
_, healthbench_hard_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, HEALTHBENCH_HARD_COLS, HEALTHBENCH_HARD_BENCHMARK_COLS, "score", "healthbench_hard")
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
_, open_ended_romanian_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, "score", "open_ended_romanian")
_, open_ended_greek_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedGreek_COLS, OpenEndedGreek_BENCHMARK_COLS, "score", "open_ended_greek")
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")
ALL_DATASETS = {
"datasets": harness_datasets_original_df,
"open_ended": open_ended_original_df,
"med_safety": med_safety_original_df,
"medical_summarization": medical_summarization_original_df,
"aci": aci_original_df,
"soap": soap_original_df,
"healthbench": healthbench_original_df,
"healthbench_hard": healthbench_hard_original_df,
"open_ended_arabic": open_ended_arabic_df,
"open_ended_french": open_ended_french_df,
"open_ended_portuguese": open_ended_portuguese_df,
"open_ended_romanian": open_ended_romanian_df,
"open_ended_greek": open_ended_greek_df,
"open_ended_spanish": open_ended_spanish_df,
"closed_ended_multilingual": closed_ended_multilingual_df,
}
end_time = time.time()
print(f"Dataframes loaded in {end_time - start_time:.2f} seconds.")
# Evaluation Queue DataFrames
(finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# =====================================================================================
# 2. EFFICIENT FILTERING LOGIC
# =====================================================================================
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
AutoEvalColumn.model.name,
]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
filtered_df = df
if type_query is not None:
type_name = [t.split(" ")[1] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type.name].isin(type_name)]
if domain_specific_query is not None:
domain_specifics = []
if "π₯ Clinical models" in domain_specific_query:
domain_specifics.append(True)
if "Generic models" in domain_specific_query:
domain_specifics.append(False)
filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]
if precision_query is not None:
if AutoEvalColumn.precision.name in df.columns:
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
if size_query is not None:
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
def get_filtered_table(
shown_columns: list,
query: str,
domain_specific_query: list,
size_query: list,
*, # force subset_name to be a keyword-only argument
subset_name: str
):
original_df = ALL_DATASETS[subset_name]
type_query = None
filtered_df = filter_models(original_df, type_query, domain_specific_query, size_query, None, False)
filtered_df = filter_queries(query, filtered_df)
always_here_cols = [AutoEvalColumn.model.name]
available_cols = [c for c in shown_columns if c in filtered_df.columns]
final_df = filtered_df[always_here_cols + available_cols]
del filtered_df
gc.collect()
return final_df
# =====================================================================================
# 3. REUSABLE UI CREATION FUNCTION
# =====================================================================================
def create_leaderboard_ui(subset_name: str, column_choices: list, default_columns: list):
"""Creates a full leaderboard UI block for a given subset."""
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=f"π Search for models...",
show_label=False,
elem_id=f"search-bar-{subset_name}",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=column_choices,
value=default_columns,
label="Select columns to show",
elem_id=f"column-select-{subset_name}",
interactive=True,
)
with gr.Column(min_width=320):
filter_domain_specific = gr.CheckboxGroup(
label="Domain Specificity",
choices=["π₯ Clinical models", "Generic models"],
value=["π₯ Clinical models", "Generic models"],
interactive=True,
elem_id=f"filter-domain-{subset_name}",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id=f"filter-size-{subset_name}",
)
update_fn = functools.partial(get_filtered_table, subset_name=subset_name)
initial_df = update_fn(
shown_columns=default_columns,
query="",
domain_specific_query=["π₯ Clinical models", "Generic models"],
size_query=list(NUMERIC_INTERVALS.keys())
)
leaderboard_table = gr.Dataframe(
value=initial_df,
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + default_columns,
datatype=TYPES,
elem_id=f"leaderboard-table-{subset_name}",
interactive=False,
)
inputs = [shown_columns, search_bar, filter_domain_specific, filter_columns_size]
# Attach listeners to all input components
for component in inputs:
if isinstance(component, gr.Textbox):
component.submit(update_fn, inputs, leaderboard_table)
else:
component.change(update_fn, inputs, leaderboard_table)
return leaderboard_table
# =====================================================================================
# 4. GRADIO DEMO UI (Main application layout)
# =====================================================================================
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(LOGO)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
with gr.Tabs(elem_classes="tab-buttons6") as language_tabs:
LANGUAGES = {
"πΊπΈ English": "open_ended", "π¦πͺ Arabic": "open_ended_arabic",
"π«π· French": "open_ended_french", "πͺπΈ Spanish": "open_ended_spanish",
"π΅πΉ Portuguese": "open_ended_portuguese", "π·π΄ Romanian": "open_ended_romanian",
"π¬π· Greek": "open_ended_greek",
}
for idx, (label, subset) in enumerate(LANGUAGES.items()):
with gr.TabItem(label, elem_id=f"llm-benchmark-tab-open-{subset}", id=idx):
judge_text = "**Note:** Llama 3.1 70B Instruct has been used as judge for English." if label == "πΊπΈ English" else "**Note:** Qwen 2.5 72B Instruct has been used as judge for this language."
gr.Markdown(judge_text, elem_classes="markdown-text")
create_leaderboard_ui(
subset_name=subset,
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)]
)
with gr.Accordion("π¬ Generation templates", open=False):
with gr.Accordion("Response generation", open=False):
render_generation_templates(task="open_ended", generation_type="response_generation")
with gr.Accordion("Scoring Rubric", open=False):
render_generation_templates(task="open_ended", generation_type="scoring_rubric")
with gr.TabItem("π
Medical Summarization", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
create_leaderboard_ui(
subset_name="medical_summarization",
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)],
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)]
)
with gr.Accordion("π¬ Generation templates", open=False):
with gr.Accordion("Response generation", open=False):
render_generation_templates(task="medical_summarization", generation_type="response_generation")
with gr.Accordion("Question generation", open=False):
render_generation_templates(task="ce", generation_type="question_generation")
with gr.Accordion("Cross Examination", open=False):
render_generation_templates(task="ce", generation_type="cross_examination")
with gr.TabItem("π
Note generation", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons2"):
with gr.TabItem("ACI Bench", id=0):
create_leaderboard_ui(
subset_name="aci",
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)],
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)]
)
with gr.TabItem("SOAP Notes", id=1):
create_leaderboard_ui(
subset_name="soap",
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)],
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)]
)
# Add accordions for this section if needed, similar to other tabs
with gr.TabItem("π
HealthBench", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(HEALTHBENCH_METRICS, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons2"):
with gr.TabItem("HealthBench", id=0):
create_leaderboard_ui(
subset_name="healthbench",
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_col)],
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_col)]
)
with gr.TabItem("HealthBench-Hard", id=1):
create_leaderboard_ui(
subset_name="healthbench_hard",
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_hard_col)],
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.healthbench_hard_col)]
)
with gr.TabItem("π
Med Safety", elem_id="llm-benchmark-tab-table", id=5):
create_leaderboard_ui(
subset_name="med_safety",
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)],
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)]
)
with gr.Accordion("π¬ Generation templates", open=False):
with gr.Accordion("Response generation", open=False):
render_generation_templates(task="med_safety", generation_type="response_generation")
with gr.Accordion("Scoring Rubric", open=False):
render_generation_templates(task="med_safety", generation_type="scoring_rubric")
with gr.TabItem("π
Closed Ended Evaluation", elem_id="llm-benchmark-tab-closed", id=6):
with gr.Tabs(elem_classes="tab-buttons2"):
with gr.TabItem("English", id=0):
create_leaderboard_ui(
subset_name="datasets",
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)]
)
with gr.TabItem("π Multilingual", id=1):
gr.Markdown("π **Dataset Information:** This tab uses the Global MMLU dataset filtering only the subcategory: medical (10.7%)")
create_leaderboard_ui(
subset_name="closed_ended_multilingual",
column_choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
default_columns=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)]
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=7):
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
gr.HTML(FIVE_PILLAR_DIAGRAM)
gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=8):
with gr.Column():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Accordion(f"β
Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
gr.Dataframe(value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
with gr.Accordion(f"π Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
gr.Dataframe(value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
with gr.Accordion(f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
gr.Dataframe(value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="auto",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value=WeightType.Original.value.name,
interactive=False,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", interactive=False)
with gr.Row():
domain_specific_toggle = gr.Checkbox(
label="Domain specific",
value=False,
info="Is your model medically oriented?",
)
chat_template_toggle = gr.Checkbox(
label="Use chat template",
value=False,
info="Is your model a chat model?",
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
model_type,
domain_specific_toggle,
chat_template_toggle,
precision,
weight_type
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=86400)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'], share=True , ssr_mode=False) |