Spaces:
Running
Running
nadsaa
commited on
Commit
·
d83f3a1
1
Parent(s):
3abe9fa
multilingual results
Browse files- app.py +417 -541
- app_original.py +1276 -0
- src/about.py +81 -5
- src/display/utils.py +68 -13
- src/leaderboard/instr.txt +16 -0
- src/leaderboard/read_evals.py +133 -21
- src/populate.py +5 -4
app.py
CHANGED
|
@@ -31,14 +31,14 @@ from src.display.utils import (
|
|
| 31 |
MEDICAL_SUMMARIZATION_BENCHMARK_COLS,
|
| 32 |
ACI_BENCHMARK_COLS,
|
| 33 |
SOAP_BENCHMARK_COLS,
|
| 34 |
-
CLOSED_ENDED_ARABIC_BENCHMARK_COLS,
|
| 35 |
DATASET_COLS,
|
| 36 |
OPEN_ENDED_COLS,
|
| 37 |
MED_SAFETY_COLS,
|
| 38 |
MEDICAL_SUMMARIZATION_COLS,
|
| 39 |
ACI_COLS,
|
| 40 |
SOAP_COLS,
|
| 41 |
-
CLOSED_ENDED_ARABIC_COLS,
|
| 42 |
EVAL_COLS,
|
| 43 |
EVAL_TYPES,
|
| 44 |
NUMERIC_INTERVALS,
|
|
@@ -50,7 +50,23 @@ from src.display.utils import (
|
|
| 50 |
Precision,
|
| 51 |
WeightType,
|
| 52 |
fields,
|
| 53 |
-
render_generation_templates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
)
|
| 55 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
| 56 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
@@ -96,9 +112,28 @@ aci_leaderboard_df = aci_original_df.copy()
|
|
| 96 |
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
|
| 97 |
soap_leaderboard_df = soap_original_df.copy()
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
# breakpoint()
|
| 104 |
# # Token based results
|
|
@@ -136,9 +171,28 @@ def update_df(shown_columns, subset="datasets"):
|
|
| 136 |
elif subset == "soap":
|
| 137 |
leaderboard_table_df = soap_leaderboard_df.copy()
|
| 138 |
hidden_leader_board_df = soap_original_df
|
| 139 |
-
elif
|
| 140 |
-
leaderboard_table_df =
|
| 141 |
-
hidden_leader_board_df =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
# else:
|
| 143 |
# match evaluation_metric:
|
| 144 |
# case "Span Based":
|
|
@@ -258,128 +312,140 @@ def filter_models(
|
|
| 258 |
demo = gr.Blocks(css=custom_css)
|
| 259 |
with demo:
|
| 260 |
print("hello")
|
| 261 |
-
if PRIVATE_REPO:
|
| 262 |
-
gr.HTML(TITLE)
|
| 263 |
gr.HTML(LOGO)
|
| 264 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
)
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
],
|
| 284 |
-
|
| 285 |
-
elem_id="column-select",
|
| 286 |
-
interactive=True,
|
| 287 |
)
|
| 288 |
-
# with gr.Row():
|
| 289 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 290 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 291 |
-
# )
|
| 292 |
-
with gr.Column(min_width=320):
|
| 293 |
-
# with gr.Box(elem_id="box-filter"):
|
| 294 |
-
filter_columns_type = gr.CheckboxGroup(
|
| 295 |
-
label="Model Types",
|
| 296 |
-
choices=[t.to_str() for t in ModelType],
|
| 297 |
-
value=[t.to_str() for t in ModelType],
|
| 298 |
-
interactive=True,
|
| 299 |
-
elem_id="filter-columns-type",
|
| 300 |
-
)
|
| 301 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 302 |
-
# label="Architecture Types",
|
| 303 |
-
# choices=[i.value.name for i in ModelArch],
|
| 304 |
-
# value=[i.value.name for i in ModelArch],
|
| 305 |
-
# interactive=True,
|
| 306 |
-
# elem_id="filter-columns-architecture",
|
| 307 |
-
# )
|
| 308 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 309 |
-
label="Domain Specificity",
|
| 310 |
-
choices=["🏥 Clinical models", "Generic models"],
|
| 311 |
-
value=["🏥 Clinical models", "Generic models"],
|
| 312 |
-
interactive=True,
|
| 313 |
-
elem_id="filter-columns-type",
|
| 314 |
-
)
|
| 315 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 316 |
-
label="Model sizes (in billions of parameters)",
|
| 317 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 318 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 319 |
-
interactive=True,
|
| 320 |
-
elem_id="filter-columns-size",
|
| 321 |
-
)
|
| 322 |
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
leaderboard_table = gr.components.Dataframe(
|
| 326 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 327 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 328 |
-
datatype=TYPES,
|
| 329 |
-
elem_id="leaderboard-table",
|
| 330 |
-
interactive=False,
|
| 331 |
-
visible=True,
|
| 332 |
-
)
|
| 333 |
|
| 334 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 335 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 336 |
-
value=datasets_original_df[OPEN_ENDED_COLS],
|
| 337 |
-
headers=OPEN_ENDED_COLS,
|
| 338 |
-
datatype=TYPES,
|
| 339 |
-
visible=False,
|
| 340 |
-
)
|
| 341 |
|
| 342 |
-
|
| 343 |
-
search_bar.submit(
|
| 344 |
-
update_table,
|
| 345 |
-
[
|
| 346 |
-
hidden_leaderboard_table_for_search,
|
| 347 |
-
shown_columns,
|
| 348 |
-
search_bar,
|
| 349 |
-
filter_columns_type,
|
| 350 |
-
filter_domain_specific,
|
| 351 |
-
filter_columns_size
|
| 352 |
-
# filter_columns_architecture
|
| 353 |
-
],
|
| 354 |
-
leaderboard_table,
|
| 355 |
-
)
|
| 356 |
-
for selector in [
|
| 357 |
-
shown_columns,
|
| 358 |
-
filter_columns_type,
|
| 359 |
-
filter_domain_specific,
|
| 360 |
-
# filter_columns_architecture,
|
| 361 |
-
filter_columns_size,
|
| 362 |
-
# deleted_models_visibility,
|
| 363 |
-
]:
|
| 364 |
-
selector.change(
|
| 365 |
-
update_table,
|
| 366 |
-
[
|
| 367 |
-
hidden_leaderboard_table_for_search,
|
| 368 |
-
shown_columns,
|
| 369 |
-
search_bar,
|
| 370 |
-
filter_columns_type,
|
| 371 |
-
filter_domain_specific,
|
| 372 |
-
filter_columns_size
|
| 373 |
-
# filter_columns_architecture,
|
| 374 |
-
],
|
| 375 |
-
leaderboard_table,
|
| 376 |
-
queue=True,
|
| 377 |
-
)
|
| 378 |
-
with gr.Accordion("💬 Generation templates", open=False):
|
| 379 |
-
with gr.Accordion("Response generation", open=False):
|
| 380 |
-
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="response_generation")
|
| 381 |
-
with gr.Accordion("Scoring Rubric", open=False):
|
| 382 |
-
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
| 383 |
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
| 384 |
with gr.Row():
|
| 385 |
with gr.Column():
|
|
@@ -387,7 +453,7 @@ with demo:
|
|
| 387 |
search_bar = gr.Textbox(
|
| 388 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 389 |
show_label=False,
|
| 390 |
-
elem_id="search-bar",
|
| 391 |
)
|
| 392 |
with gr.Row():
|
| 393 |
shown_columns = gr.CheckboxGroup(
|
|
@@ -398,64 +464,50 @@ with demo:
|
|
| 398 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
|
| 399 |
],
|
| 400 |
label="Select columns to show",
|
| 401 |
-
elem_id="column-select",
|
| 402 |
interactive=True,
|
| 403 |
)
|
| 404 |
-
# with gr.Row():
|
| 405 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 406 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 407 |
-
# )
|
| 408 |
with gr.Column(min_width=320):
|
| 409 |
-
# with gr.Box(elem_id="box-filter"):
|
| 410 |
filter_columns_type = gr.CheckboxGroup(
|
| 411 |
label="Model Types",
|
| 412 |
choices=[t.to_str() for t in ModelType],
|
| 413 |
value=[t.to_str() for t in ModelType],
|
| 414 |
interactive=True,
|
| 415 |
-
elem_id="filter-columns-type",
|
| 416 |
)
|
| 417 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 418 |
-
# label="Architecture Types",
|
| 419 |
-
# choices=[i.value.name for i in ModelArch],
|
| 420 |
-
# value=[i.value.name for i in ModelArch],
|
| 421 |
-
# interactive=True,
|
| 422 |
-
# elem_id="filter-columns-architecture",
|
| 423 |
-
# )
|
| 424 |
filter_domain_specific = gr.CheckboxGroup(
|
| 425 |
label="Domain Specificity",
|
| 426 |
choices=["🏥 Clinical models", "Generic models"],
|
| 427 |
value=["🏥 Clinical models", "Generic models"],
|
| 428 |
interactive=True,
|
| 429 |
-
elem_id="filter-
|
| 430 |
)
|
| 431 |
filter_columns_size = gr.CheckboxGroup(
|
| 432 |
label="Model sizes (in billions of parameters)",
|
| 433 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 434 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 435 |
interactive=True,
|
| 436 |
-
elem_id="filter-columns-size",
|
| 437 |
)
|
| 438 |
|
| 439 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")
|
| 440 |
|
| 441 |
-
leaderboard_table = gr.
|
| 442 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 443 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 444 |
datatype=TYPES,
|
| 445 |
-
elem_id="leaderboard-table",
|
| 446 |
interactive=False,
|
| 447 |
visible=True,
|
| 448 |
)
|
| 449 |
|
| 450 |
-
|
| 451 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 452 |
value=datasets_original_df[MED_SAFETY_COLS],
|
| 453 |
headers=MED_SAFETY_COLS,
|
| 454 |
datatype=TYPES,
|
| 455 |
visible=False,
|
| 456 |
)
|
| 457 |
-
|
| 458 |
-
|
| 459 |
search_bar.submit(
|
| 460 |
update_table,
|
| 461 |
[
|
|
@@ -465,16 +517,15 @@ with demo:
|
|
| 465 |
filter_columns_type,
|
| 466 |
filter_domain_specific,
|
| 467 |
filter_columns_size
|
| 468 |
-
# filter_columns_architecture
|
| 469 |
],
|
| 470 |
leaderboard_table,
|
| 471 |
)
|
|
|
|
| 472 |
for selector in [
|
| 473 |
shown_columns,
|
| 474 |
filter_columns_type,
|
| 475 |
filter_domain_specific,
|
| 476 |
filter_columns_size,
|
| 477 |
-
# deleted_models_visibility,
|
| 478 |
]:
|
| 479 |
selector.change(
|
| 480 |
update_table,
|
|
@@ -489,11 +540,13 @@ with demo:
|
|
| 489 |
leaderboard_table,
|
| 490 |
queue=True,
|
| 491 |
)
|
|
|
|
| 492 |
with gr.Accordion("💬 Generation templates", open=False):
|
| 493 |
with gr.Accordion("Response generation", open=False):
|
| 494 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="response_generation")
|
| 495 |
with gr.Accordion("Scoring Rubric", open=False):
|
| 496 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
|
|
|
| 497 |
with gr.TabItem("🏅 Medical Summarization", elem_id="llm-benchmark-tab-table", id=3):
|
| 498 |
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
| 499 |
with gr.Row():
|
|
@@ -502,7 +555,7 @@ with demo:
|
|
| 502 |
search_bar = gr.Textbox(
|
| 503 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 504 |
show_label=False,
|
| 505 |
-
elem_id="search-bar",
|
| 506 |
)
|
| 507 |
with gr.Row():
|
| 508 |
shown_columns = gr.CheckboxGroup(
|
|
@@ -513,64 +566,50 @@ with demo:
|
|
| 513 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
|
| 514 |
],
|
| 515 |
label="Select columns to show",
|
| 516 |
-
elem_id="column-select",
|
| 517 |
interactive=True,
|
| 518 |
)
|
| 519 |
-
# with gr.Row():
|
| 520 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 521 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 522 |
-
# )
|
| 523 |
with gr.Column(min_width=320):
|
| 524 |
-
# with gr.Box(elem_id="box-filter"):
|
| 525 |
filter_columns_type = gr.CheckboxGroup(
|
| 526 |
label="Model Types",
|
| 527 |
choices=[t.to_str() for t in ModelType],
|
| 528 |
value=[t.to_str() for t in ModelType],
|
| 529 |
interactive=True,
|
| 530 |
-
elem_id="filter-columns-type",
|
| 531 |
)
|
| 532 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 533 |
-
# label="Architecture Types",
|
| 534 |
-
# choices=[i.value.name for i in ModelArch],
|
| 535 |
-
# value=[i.value.name for i in ModelArch],
|
| 536 |
-
# interactive=True,
|
| 537 |
-
# elem_id="filter-columns-architecture",
|
| 538 |
-
# )
|
| 539 |
filter_domain_specific = gr.CheckboxGroup(
|
| 540 |
label="Domain Specificity",
|
| 541 |
choices=["🏥 Clinical models", "Generic models"],
|
| 542 |
value=["🏥 Clinical models", "Generic models"],
|
| 543 |
interactive=True,
|
| 544 |
-
elem_id="filter-
|
| 545 |
)
|
| 546 |
filter_columns_size = gr.CheckboxGroup(
|
| 547 |
label="Model sizes (in billions of parameters)",
|
| 548 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 549 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 550 |
interactive=True,
|
| 551 |
-
elem_id="filter-columns-size",
|
| 552 |
)
|
| 553 |
|
| 554 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")
|
| 555 |
|
| 556 |
-
leaderboard_table = gr.
|
| 557 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 558 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 559 |
datatype=TYPES,
|
| 560 |
-
elem_id="leaderboard-table",
|
| 561 |
interactive=False,
|
| 562 |
visible=True,
|
| 563 |
)
|
| 564 |
|
| 565 |
-
|
| 566 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 567 |
value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
|
| 568 |
headers=MEDICAL_SUMMARIZATION_COLS,
|
| 569 |
datatype=TYPES,
|
| 570 |
visible=False,
|
| 571 |
)
|
| 572 |
-
|
| 573 |
-
|
| 574 |
search_bar.submit(
|
| 575 |
update_table,
|
| 576 |
[
|
|
@@ -580,16 +619,15 @@ with demo:
|
|
| 580 |
filter_columns_type,
|
| 581 |
filter_domain_specific,
|
| 582 |
filter_columns_size
|
| 583 |
-
# filter_columns_architecture
|
| 584 |
],
|
| 585 |
leaderboard_table,
|
| 586 |
)
|
|
|
|
| 587 |
for selector in [
|
| 588 |
shown_columns,
|
| 589 |
filter_columns_type,
|
| 590 |
filter_domain_specific,
|
| 591 |
filter_columns_size,
|
| 592 |
-
# deleted_models_visibility,
|
| 593 |
]:
|
| 594 |
selector.change(
|
| 595 |
update_table,
|
|
@@ -604,24 +642,26 @@ with demo:
|
|
| 604 |
leaderboard_table,
|
| 605 |
queue=True,
|
| 606 |
)
|
|
|
|
| 607 |
with gr.Accordion("💬 Generation templates", open=False):
|
| 608 |
with gr.Accordion("Response generation", open=False):
|
| 609 |
system_prompt, user_prompt = render_generation_templates(task="medical_summarization", generation_type="response_generation")
|
| 610 |
with gr.Accordion("Question generation", open=False):
|
| 611 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
| 612 |
with gr.Accordion("Cross Examination", open=False):
|
| 613 |
-
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
|
|
|
| 614 |
with gr.TabItem("🏅 Note generation", elem_id="llm-benchmark-tab-table", id=4):
|
| 615 |
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
| 616 |
-
with gr.Tabs(elem_classes="tab-buttons2") as
|
| 617 |
-
with gr.TabItem("ACI Bench", elem_id="llm-benchmark-tab-
|
| 618 |
with gr.Row():
|
| 619 |
with gr.Column():
|
| 620 |
with gr.Row():
|
| 621 |
search_bar = gr.Textbox(
|
| 622 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 623 |
show_label=False,
|
| 624 |
-
elem_id="search-bar",
|
| 625 |
)
|
| 626 |
with gr.Row():
|
| 627 |
shown_columns = gr.CheckboxGroup(
|
|
@@ -632,64 +672,50 @@ with demo:
|
|
| 632 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
|
| 633 |
],
|
| 634 |
label="Select columns to show",
|
| 635 |
-
elem_id="column-select",
|
| 636 |
interactive=True,
|
| 637 |
)
|
| 638 |
-
# with gr.Row():
|
| 639 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 640 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 641 |
-
# )
|
| 642 |
with gr.Column(min_width=320):
|
| 643 |
-
# with gr.Box(elem_id="box-filter"):
|
| 644 |
filter_columns_type = gr.CheckboxGroup(
|
| 645 |
label="Model Types",
|
| 646 |
choices=[t.to_str() for t in ModelType],
|
| 647 |
value=[t.to_str() for t in ModelType],
|
| 648 |
interactive=True,
|
| 649 |
-
elem_id="filter-columns-type",
|
| 650 |
)
|
| 651 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 652 |
-
# label="Architecture Types",
|
| 653 |
-
# choices=[i.value.name for i in ModelArch],
|
| 654 |
-
# value=[i.value.name for i in ModelArch],
|
| 655 |
-
# interactive=True,
|
| 656 |
-
# elem_id="filter-columns-architecture",
|
| 657 |
-
# )
|
| 658 |
filter_domain_specific = gr.CheckboxGroup(
|
| 659 |
label="Domain Specificity",
|
| 660 |
choices=["🏥 Clinical models", "Generic models"],
|
| 661 |
value=["🏥 Clinical models", "Generic models"],
|
| 662 |
interactive=True,
|
| 663 |
-
elem_id="filter-
|
| 664 |
)
|
| 665 |
filter_columns_size = gr.CheckboxGroup(
|
| 666 |
label="Model sizes (in billions of parameters)",
|
| 667 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 668 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 669 |
interactive=True,
|
| 670 |
-
elem_id="filter-columns-size",
|
| 671 |
)
|
| 672 |
|
| 673 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")
|
| 674 |
|
| 675 |
-
leaderboard_table = gr.
|
| 676 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 677 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 678 |
datatype=TYPES,
|
| 679 |
-
elem_id="leaderboard-table",
|
| 680 |
interactive=False,
|
| 681 |
visible=True,
|
| 682 |
)
|
| 683 |
|
| 684 |
-
|
| 685 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 686 |
value=datasets_original_df[ACI_COLS],
|
| 687 |
headers=ACI_COLS,
|
| 688 |
datatype=TYPES,
|
| 689 |
visible=False,
|
| 690 |
)
|
| 691 |
-
|
| 692 |
-
|
| 693 |
search_bar.submit(
|
| 694 |
update_table,
|
| 695 |
[
|
|
@@ -699,16 +725,15 @@ with demo:
|
|
| 699 |
filter_columns_type,
|
| 700 |
filter_domain_specific,
|
| 701 |
filter_columns_size
|
| 702 |
-
# filter_columns_architecture
|
| 703 |
],
|
| 704 |
leaderboard_table,
|
| 705 |
)
|
|
|
|
| 706 |
for selector in [
|
| 707 |
shown_columns,
|
| 708 |
filter_columns_type,
|
| 709 |
filter_domain_specific,
|
| 710 |
filter_columns_size,
|
| 711 |
-
# deleted_models_visibility,
|
| 712 |
]:
|
| 713 |
selector.change(
|
| 714 |
update_table,
|
|
@@ -723,14 +748,15 @@ with demo:
|
|
| 723 |
leaderboard_table,
|
| 724 |
queue=True,
|
| 725 |
)
|
| 726 |
-
|
|
|
|
| 727 |
with gr.Row():
|
| 728 |
with gr.Column():
|
| 729 |
with gr.Row():
|
| 730 |
search_bar = gr.Textbox(
|
| 731 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 732 |
show_label=False,
|
| 733 |
-
elem_id="search-bar",
|
| 734 |
)
|
| 735 |
with gr.Row():
|
| 736 |
shown_columns = gr.CheckboxGroup(
|
|
@@ -741,64 +767,50 @@ with demo:
|
|
| 741 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
|
| 742 |
],
|
| 743 |
label="Select columns to show",
|
| 744 |
-
elem_id="column-select",
|
| 745 |
interactive=True,
|
| 746 |
)
|
| 747 |
-
# with gr.Row():
|
| 748 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 749 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 750 |
-
# )
|
| 751 |
with gr.Column(min_width=320):
|
| 752 |
-
# with gr.Box(elem_id="box-filter"):
|
| 753 |
filter_columns_type = gr.CheckboxGroup(
|
| 754 |
label="Model Types",
|
| 755 |
choices=[t.to_str() for t in ModelType],
|
| 756 |
value=[t.to_str() for t in ModelType],
|
| 757 |
interactive=True,
|
| 758 |
-
elem_id="filter-columns-type",
|
| 759 |
)
|
| 760 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 761 |
-
# label="Architecture Types",
|
| 762 |
-
# choices=[i.value.name for i in ModelArch],
|
| 763 |
-
# value=[i.value.name for i in ModelArch],
|
| 764 |
-
# interactive=True,
|
| 765 |
-
# elem_id="filter-columns-architecture",
|
| 766 |
-
# )
|
| 767 |
filter_domain_specific = gr.CheckboxGroup(
|
| 768 |
label="Domain Specificity",
|
| 769 |
choices=["🏥 Clinical models", "Generic models"],
|
| 770 |
value=["🏥 Clinical models", "Generic models"],
|
| 771 |
interactive=True,
|
| 772 |
-
elem_id="filter-
|
| 773 |
)
|
| 774 |
filter_columns_size = gr.CheckboxGroup(
|
| 775 |
label="Model sizes (in billions of parameters)",
|
| 776 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 777 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 778 |
interactive=True,
|
| 779 |
-
elem_id="filter-columns-size",
|
| 780 |
)
|
| 781 |
|
| 782 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")
|
| 783 |
|
| 784 |
-
leaderboard_table = gr.
|
| 785 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 786 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 787 |
datatype=TYPES,
|
| 788 |
-
elem_id="leaderboard-table",
|
| 789 |
interactive=False,
|
| 790 |
visible=True,
|
| 791 |
)
|
| 792 |
|
| 793 |
-
|
| 794 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 795 |
value=datasets_original_df[SOAP_COLS],
|
| 796 |
headers=SOAP_COLS,
|
| 797 |
datatype=TYPES,
|
| 798 |
visible=False,
|
| 799 |
)
|
| 800 |
-
|
| 801 |
-
|
| 802 |
search_bar.submit(
|
| 803 |
update_table,
|
| 804 |
[
|
|
@@ -808,16 +820,15 @@ with demo:
|
|
| 808 |
filter_columns_type,
|
| 809 |
filter_domain_specific,
|
| 810 |
filter_columns_size
|
| 811 |
-
# filter_columns_architecture
|
| 812 |
],
|
| 813 |
leaderboard_table,
|
| 814 |
)
|
|
|
|
| 815 |
for selector in [
|
| 816 |
shown_columns,
|
| 817 |
filter_columns_type,
|
| 818 |
filter_domain_specific,
|
| 819 |
filter_columns_size,
|
| 820 |
-
# deleted_models_visibility,
|
| 821 |
]:
|
| 822 |
selector.change(
|
| 823 |
update_table,
|
|
@@ -832,6 +843,7 @@ with demo:
|
|
| 832 |
leaderboard_table,
|
| 833 |
queue=True,
|
| 834 |
)
|
|
|
|
| 835 |
with gr.Accordion("💬 Generation templates", open=False):
|
| 836 |
with gr.Accordion("ACI-Bench Response generation", open=False):
|
| 837 |
system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
|
|
@@ -840,87 +852,93 @@ with demo:
|
|
| 840 |
with gr.Accordion("Question generation", open=False):
|
| 841 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
| 842 |
with gr.Accordion("Cross Examination", open=False):
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
with gr.Row():
|
| 857 |
-
shown_columns = gr.CheckboxGroup(
|
| 858 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_arabic_col)],
|
| 859 |
-
value=[
|
| 860 |
-
c.name
|
| 861 |
-
for c in fields(AutoEvalColumn)
|
| 862 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_arabic_col)
|
| 863 |
-
],
|
| 864 |
-
label="Select columns to show",
|
| 865 |
-
elem_id="column-select",
|
| 866 |
-
interactive=True,
|
| 867 |
-
)
|
| 868 |
-
# with gr.Row():
|
| 869 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 870 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 871 |
-
# )
|
| 872 |
-
with gr.Column(min_width=320):
|
| 873 |
-
# with gr.Box(elem_id="box-filter"):
|
| 874 |
-
filter_columns_type = gr.CheckboxGroup(
|
| 875 |
-
label="Model Types",
|
| 876 |
-
choices=[t.to_str() for t in ModelType],
|
| 877 |
-
value=[t.to_str() for t in ModelType],
|
| 878 |
-
interactive=True,
|
| 879 |
-
elem_id="filter-columns-type",
|
| 880 |
-
)
|
| 881 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 882 |
-
# label="Architecture Types",
|
| 883 |
-
# choices=[i.value.name for i in ModelArch],
|
| 884 |
-
# value=[i.value.name for i in ModelArch],
|
| 885 |
-
# interactive=True,
|
| 886 |
-
# elem_id="filter-columns-architecture",
|
| 887 |
-
# )
|
| 888 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 889 |
-
label="Domain Specificity",
|
| 890 |
-
choices=["🏥 Clinical models", "Generic models"],
|
| 891 |
-
value=["🏥 Clinical models", "Generic models"],
|
| 892 |
-
interactive=True,
|
| 893 |
-
elem_id="filter-columns-type",
|
| 894 |
)
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
choices=
|
| 898 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 899 |
interactive=True,
|
| 900 |
-
elem_id="filter-columns-size",
|
| 901 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 902 |
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 924 |
update_table,
|
| 925 |
[
|
| 926 |
hidden_leaderboard_table_for_search,
|
|
@@ -929,256 +947,114 @@ with demo:
|
|
| 929 |
filter_columns_type,
|
| 930 |
filter_domain_specific,
|
| 931 |
filter_columns_size
|
| 932 |
-
# filter_columns_architecture
|
| 933 |
],
|
| 934 |
leaderboard_table,
|
|
|
|
| 935 |
)
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
filter_domain_specific,
|
| 940 |
-
# filter_columns_architecture,
|
| 941 |
-
filter_columns_size,
|
| 942 |
-
# deleted_models_visibility,
|
| 943 |
-
]:
|
| 944 |
-
selector.change(
|
| 945 |
-
update_table,
|
| 946 |
-
[
|
| 947 |
-
hidden_leaderboard_table_for_search,
|
| 948 |
-
shown_columns,
|
| 949 |
-
search_bar,
|
| 950 |
-
filter_columns_type,
|
| 951 |
-
filter_domain_specific,
|
| 952 |
-
filter_columns_size
|
| 953 |
-
# filter_columns_architecture,
|
| 954 |
-
],
|
| 955 |
-
leaderboard_table,
|
| 956 |
-
queue=True,
|
| 957 |
-
)
|
| 958 |
-
with gr.TabItem("🏅 Closed Ended Evaluation", elem_id="llm-benchmark-tab-table", id=0):
|
| 959 |
-
with gr.Row():
|
| 960 |
-
with gr.Column():
|
| 961 |
with gr.Row():
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
show_label=False,
|
| 965 |
-
elem_id="search-bar",
|
| 966 |
-
)
|
| 967 |
with gr.Row():
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
# interactive=True,
|
| 997 |
-
# elem_id="filter-columns-architecture",
|
| 998 |
-
# )
|
| 999 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 1000 |
-
label="Domain Specificity",
|
| 1001 |
-
choices=["🏥 Clinical models", "Generic models"],
|
| 1002 |
-
value=["🏥 Clinical models", "Generic models"],
|
| 1003 |
-
interactive=True,
|
| 1004 |
-
elem_id="filter-columns-type",
|
| 1005 |
-
)
|
| 1006 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 1007 |
-
label="Model sizes (in billions of parameters)",
|
| 1008 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 1009 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 1010 |
-
interactive=True,
|
| 1011 |
-
elem_id="filter-columns-size",
|
| 1012 |
-
)
|
| 1013 |
-
|
| 1014 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
| 1015 |
-
|
| 1016 |
-
leaderboard_table = gr.components.Dataframe(
|
| 1017 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 1018 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 1019 |
-
datatype=TYPES,
|
| 1020 |
-
elem_id="leaderboard-table",
|
| 1021 |
-
interactive=False,
|
| 1022 |
-
visible=True,
|
| 1023 |
-
)
|
| 1024 |
-
|
| 1025 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 1026 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 1027 |
-
value=datasets_original_df[DATASET_COLS],
|
| 1028 |
-
headers=DATASET_COLS,
|
| 1029 |
-
datatype=TYPES,
|
| 1030 |
-
visible=False,
|
| 1031 |
-
)
|
| 1032 |
-
|
| 1033 |
-
|
| 1034 |
-
search_bar.submit(
|
| 1035 |
-
update_table,
|
| 1036 |
-
[
|
| 1037 |
-
hidden_leaderboard_table_for_search,
|
| 1038 |
-
shown_columns,
|
| 1039 |
-
search_bar,
|
| 1040 |
-
filter_columns_type,
|
| 1041 |
-
filter_domain_specific,
|
| 1042 |
-
filter_columns_size
|
| 1043 |
-
# filter_columns_architecture
|
| 1044 |
-
],
|
| 1045 |
-
leaderboard_table,
|
| 1046 |
-
)
|
| 1047 |
-
for selector in [
|
| 1048 |
-
shown_columns,
|
| 1049 |
-
filter_columns_type,
|
| 1050 |
-
filter_domain_specific,
|
| 1051 |
-
# filter_columns_architecture,
|
| 1052 |
-
filter_columns_size,
|
| 1053 |
-
# deleted_models_visibility,
|
| 1054 |
-
]:
|
| 1055 |
-
selector.change(
|
| 1056 |
-
update_table,
|
| 1057 |
-
[
|
| 1058 |
-
hidden_leaderboard_table_for_search,
|
| 1059 |
-
shown_columns,
|
| 1060 |
-
search_bar,
|
| 1061 |
-
filter_columns_type,
|
| 1062 |
-
filter_domain_specific,
|
| 1063 |
-
filter_columns_size
|
| 1064 |
-
# filter_columns_architecture,
|
| 1065 |
-
],
|
| 1066 |
-
leaderboard_table,
|
| 1067 |
-
queue=True,
|
| 1068 |
-
)
|
| 1069 |
-
|
| 1070 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=5):
|
| 1071 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
|
| 1072 |
-
gr.HTML(FIVE_PILLAR_DIAGRAM)
|
| 1073 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
|
| 1074 |
-
# gr.HTML(EVALUATION_EXAMPLE_IMG, elem_classes="logo")
|
| 1075 |
-
# gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
|
| 1076 |
-
# gr.HTML(ENTITY_DISTRIBUTION_IMG, elem_classes="logo")
|
| 1077 |
-
# gr.Markdown(LLM_BENCHMARKS_TEXT_3, elem_classes="markdown-text")
|
| 1078 |
-
|
| 1079 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=6):
|
| 1080 |
-
with gr.Column():
|
| 1081 |
-
with gr.Row():
|
| 1082 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 1083 |
-
|
| 1084 |
-
with gr.Column():
|
| 1085 |
-
with gr.Accordion(
|
| 1086 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 1087 |
-
open=False,
|
| 1088 |
-
):
|
| 1089 |
-
with gr.Row():
|
| 1090 |
-
finished_eval_table = gr.components.Dataframe(
|
| 1091 |
-
value=finished_eval_queue_df,
|
| 1092 |
-
headers=EVAL_COLS,
|
| 1093 |
-
datatype=EVAL_TYPES,
|
| 1094 |
-
row_count=5,
|
| 1095 |
)
|
| 1096 |
-
|
| 1097 |
-
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
|
| 1101 |
-
|
| 1102 |
-
value=running_eval_queue_df,
|
| 1103 |
-
headers=EVAL_COLS,
|
| 1104 |
-
datatype=EVAL_TYPES,
|
| 1105 |
-
row_count=5,
|
| 1106 |
)
|
| 1107 |
-
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
| 1111 |
-
|
| 1112 |
-
|
| 1113 |
-
pending_eval_table = gr.components.Dataframe(
|
| 1114 |
-
value=pending_eval_queue_df,
|
| 1115 |
-
headers=EVAL_COLS,
|
| 1116 |
-
datatype=EVAL_TYPES,
|
| 1117 |
-
row_count=5,
|
| 1118 |
)
|
| 1119 |
-
with gr.Row():
|
| 1120 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 1121 |
|
| 1122 |
-
|
| 1123 |
-
|
| 1124 |
-
|
| 1125 |
-
|
| 1126 |
-
|
| 1127 |
-
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
value=None,
|
| 1131 |
-
interactive=True,
|
| 1132 |
)
|
| 1133 |
-
|
| 1134 |
-
|
| 1135 |
-
|
| 1136 |
-
|
| 1137 |
-
|
| 1138 |
-
multiselect=False,
|
| 1139 |
-
value="auto",
|
| 1140 |
-
interactive=True,
|
| 1141 |
)
|
| 1142 |
-
|
| 1143 |
-
|
| 1144 |
-
|
| 1145 |
-
|
| 1146 |
-
|
| 1147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1148 |
)
|
| 1149 |
-
|
| 1150 |
-
|
| 1151 |
-
|
| 1152 |
-
|
| 1153 |
-
|
| 1154 |
-
|
| 1155 |
-
|
| 1156 |
-
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
|
| 1160 |
-
|
| 1161 |
-
|
| 1162 |
-
|
| 1163 |
-
|
| 1164 |
-
|
| 1165 |
-
|
| 1166 |
-
|
| 1167 |
-
|
| 1168 |
-
|
| 1169 |
-
|
| 1170 |
-
|
| 1171 |
-
|
| 1172 |
-
|
| 1173 |
-
precision,
|
| 1174 |
-
weight_type
|
| 1175 |
-
],
|
| 1176 |
-
submission_result,
|
| 1177 |
-
)
|
| 1178 |
-
|
| 1179 |
-
|
| 1180 |
-
with gr.Row():
|
| 1181 |
-
with gr.Accordion("📙 Citation", open=False):
|
| 1182 |
citation_button = gr.Textbox(
|
| 1183 |
value=CITATION_BUTTON_TEXT,
|
| 1184 |
label=CITATION_BUTTON_LABEL,
|
|
@@ -1190,4 +1066,4 @@ with demo:
|
|
| 1190 |
scheduler = BackgroundScheduler()
|
| 1191 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 1192 |
scheduler.start()
|
| 1193 |
-
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|
|
|
|
| 31 |
MEDICAL_SUMMARIZATION_BENCHMARK_COLS,
|
| 32 |
ACI_BENCHMARK_COLS,
|
| 33 |
SOAP_BENCHMARK_COLS,
|
| 34 |
+
#CLOSED_ENDED_ARABIC_BENCHMARK_COLS,
|
| 35 |
DATASET_COLS,
|
| 36 |
OPEN_ENDED_COLS,
|
| 37 |
MED_SAFETY_COLS,
|
| 38 |
MEDICAL_SUMMARIZATION_COLS,
|
| 39 |
ACI_COLS,
|
| 40 |
SOAP_COLS,
|
| 41 |
+
#CLOSED_ENDED_ARABIC_COLS,
|
| 42 |
EVAL_COLS,
|
| 43 |
EVAL_TYPES,
|
| 44 |
NUMERIC_INTERVALS,
|
|
|
|
| 50 |
Precision,
|
| 51 |
WeightType,
|
| 52 |
fields,
|
| 53 |
+
render_generation_templates,
|
| 54 |
+
OpenEndedArabic_COLS,
|
| 55 |
+
OpenEndedArabic_BENCHMARK_COLS,
|
| 56 |
+
OpenEndedFrench_COLS,
|
| 57 |
+
OpenEndedFrench_BENCHMARK_COLS,
|
| 58 |
+
OpenEndedPortuguese_COLS,
|
| 59 |
+
OpenEndedPortuguese_BENCHMARK_COLS,
|
| 60 |
+
OpenEndedRomanian_COLS,
|
| 61 |
+
OpenEndedRomanian_BENCHMARK_COLS,
|
| 62 |
+
OpenEndedGreek_COLS,
|
| 63 |
+
OpenEndedGreek_BENCHMARK_COLS,
|
| 64 |
+
OpenEndedSpanish_COLS,
|
| 65 |
+
OpenEndedSpanish_BENCHMARK_COLS,
|
| 66 |
+
ClosedEndedMultilingual_COLS,
|
| 67 |
+
ClosedEndedMultilingual_BENCHMARK_COLS,
|
| 68 |
+
|
| 69 |
+
|
| 70 |
)
|
| 71 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
| 72 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
|
| 112 |
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
|
| 113 |
soap_leaderboard_df = soap_original_df.copy()
|
| 114 |
|
| 115 |
+
|
| 116 |
+
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
|
| 117 |
+
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
|
| 118 |
+
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
|
| 119 |
+
_, open_ended_romanian_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, "score", "open_ended_romanian")
|
| 120 |
+
_, open_ended_greek_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedGreek_COLS, OpenEndedGreek_BENCHMARK_COLS, "score", "open_ended_greek")
|
| 121 |
+
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
|
| 122 |
+
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
open_ended_arabic_leaderboard_df = open_ended_arabic_df.copy()
|
| 126 |
+
open_ended_french_leaderboard_df = open_ended_french_df.copy()
|
| 127 |
+
open_ended_portuguese_leaderboard_df = open_ended_portuguese_df.copy()
|
| 128 |
+
open_ended_romanian_leaderboard_df = open_ended_romanian_df.copy()
|
| 129 |
+
open_ended_greek_leaderboard_df = open_ended_greek_df.copy()
|
| 130 |
+
open_ended_spanish_leaderboard_df = open_ended_spanish_df.copy()
|
| 131 |
+
closed_ended_multilingual_leaderboard_df = closed_ended_multilingual_df.copy()
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
# if PRIVATE_REPO:
|
| 135 |
+
# _, closed_ended_arabic_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, CLOSED_ENDED_ARABIC_COLS, CLOSED_ENDED_ARABIC_BENCHMARK_COLS, "score", "closed_ended_arabic")
|
| 136 |
+
# closed_ended_arabic_leaderboard_df = closed_ended_arabic_original_df.copy()
|
| 137 |
|
| 138 |
# breakpoint()
|
| 139 |
# # Token based results
|
|
|
|
| 171 |
elif subset == "soap":
|
| 172 |
leaderboard_table_df = soap_leaderboard_df.copy()
|
| 173 |
hidden_leader_board_df = soap_original_df
|
| 174 |
+
elif subset == "open_ended_arabic":
|
| 175 |
+
leaderboard_table_df = open_ended_arabic_df.copy()
|
| 176 |
+
hidden_leader_board_df = open_ended_arabic_df
|
| 177 |
+
elif subset == "open_ended_french":
|
| 178 |
+
leaderboard_table_df = open_ended_french_df.copy()
|
| 179 |
+
hidden_leader_board_df = open_ended_french_df
|
| 180 |
+
elif subset == "open_ended_portuguese":
|
| 181 |
+
leaderboard_table_df = open_ended_portuguese_df.copy()
|
| 182 |
+
hidden_leader_board_df = open_ended_portuguese_df
|
| 183 |
+
elif subset == "open_ended_romanian":
|
| 184 |
+
leaderboard_table_df = open_ended_romanian_df.copy()
|
| 185 |
+
hidden_leader_board_df = open_ended_romanian_df
|
| 186 |
+
elif subset == "open_ended_greek":
|
| 187 |
+
leaderboard_table_df = open_ended_greek_df.copy()
|
| 188 |
+
hidden_leader_board_df = open_ended_greek_df
|
| 189 |
+
elif subset == "open_ended_spanish":
|
| 190 |
+
leaderboard_table_df = open_ended_spanish_df.copy()
|
| 191 |
+
hidden_leader_board_df = open_ended_spanish_df
|
| 192 |
+
elif subset == "closed_ended_multilingual":
|
| 193 |
+
leaderboard_table_df = closed_ended_multilingual_df.copy()
|
| 194 |
+
hidden_leader_board_df = closed_ended_multilingual_df
|
| 195 |
+
|
| 196 |
# else:
|
| 197 |
# match evaluation_metric:
|
| 198 |
# case "Span Based":
|
|
|
|
| 312 |
demo = gr.Blocks(css=custom_css)
|
| 313 |
with demo:
|
| 314 |
print("hello")
|
|
|
|
|
|
|
| 315 |
gr.HTML(LOGO)
|
| 316 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
|
| 320 |
|
| 321 |
+
|
| 322 |
+
with gr.Blocks() as demo:
|
| 323 |
+
with gr.Tabs(elem_classes="tab-buttons") as outer_tabs:
|
| 324 |
+
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=11):
|
| 325 |
+
with gr.Tabs(elem_classes="tab-buttons6") as language_tabs:
|
| 326 |
+
LANGUAGES = {
|
| 327 |
+
"🇺🇸 English": "open_ended",
|
| 328 |
+
"🇦🇪 Arabic": "open_ended_arabic",
|
| 329 |
+
"🇫🇷 French": "open_ended_french",
|
| 330 |
+
"🇪🇸 Spanish": "open_ended_spanish",
|
| 331 |
+
"🇵🇹 Portuguese": "open_ended_portuguese",
|
| 332 |
+
"🇷🇴 Romanian": "open_ended_romanian",
|
| 333 |
+
"🇬🇷 Greek": "open_ended_greek",
|
| 334 |
+
}
|
| 335 |
+
|
| 336 |
+
for idx, (label, subset) in enumerate(LANGUAGES.items()):
|
| 337 |
+
with gr.TabItem(label, elem_id=f"llm-benchmark-tab-open-{subset}", id=idx):
|
| 338 |
+
# Custom judge information for each language
|
| 339 |
+
if label == "🇺🇸 English":
|
| 340 |
+
judge_text = "**Note:** Llama 3.1 70B Instruct has been used as judge for English."
|
| 341 |
+
else:
|
| 342 |
+
judge_text = "**Note:** Qwen 2.5 72B Instruct has been used as judge for this language."
|
| 343 |
+
|
| 344 |
+
gr.Markdown(judge_text, elem_classes="markdown-text")
|
| 345 |
+
|
| 346 |
+
with gr.Row():
|
| 347 |
+
with gr.Column():
|
| 348 |
+
with gr.Row():
|
| 349 |
+
search_bar = gr.Textbox(
|
| 350 |
+
placeholder=f"🔍 Search for your model in {label}...",
|
| 351 |
+
show_label=False,
|
| 352 |
+
elem_id=f"search-bar-{subset}",
|
| 353 |
+
)
|
| 354 |
+
with gr.Row():
|
| 355 |
+
shown_columns = gr.CheckboxGroup(
|
| 356 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
| 357 |
+
value=[
|
| 358 |
+
c.name
|
| 359 |
+
for c in fields(AutoEvalColumn)
|
| 360 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
| 361 |
+
],
|
| 362 |
+
label="Select columns to show",
|
| 363 |
+
elem_id=f"column-select-{subset}",
|
| 364 |
+
interactive=True,
|
| 365 |
+
)
|
| 366 |
+
with gr.Column(min_width=320):
|
| 367 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 368 |
+
label="Model Types",
|
| 369 |
+
choices=[t.to_str() for t in ModelType],
|
| 370 |
+
value=[t.to_str() for t in ModelType],
|
| 371 |
+
interactive=True,
|
| 372 |
+
elem_id=f"filter-columns-type-{subset}",
|
| 373 |
+
)
|
| 374 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 375 |
+
label="Domain Specificity",
|
| 376 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 377 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 378 |
+
interactive=True,
|
| 379 |
+
elem_id=f"filter-columns-domain-{subset}",
|
| 380 |
+
)
|
| 381 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 382 |
+
label="Model sizes (in billions of parameters)",
|
| 383 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 384 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 385 |
+
interactive=True,
|
| 386 |
+
elem_id=f"filter-columns-size-{subset}",
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset=subset)
|
| 390 |
+
|
| 391 |
+
leaderboard_table = gr.Dataframe(
|
| 392 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 393 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 394 |
+
datatype=TYPES,
|
| 395 |
+
elem_id=f"leaderboard-table-{subset}",
|
| 396 |
+
interactive=False,
|
| 397 |
+
visible=True,
|
| 398 |
)
|
| 399 |
+
|
| 400 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
| 401 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
| 402 |
+
headers=OPEN_ENDED_COLS,
|
| 403 |
+
datatype=TYPES,
|
| 404 |
+
visible=False,
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
search_bar.submit(
|
| 408 |
+
update_table,
|
| 409 |
+
[
|
| 410 |
+
hidden_leaderboard_table_for_search,
|
| 411 |
+
shown_columns,
|
| 412 |
+
search_bar,
|
| 413 |
+
filter_columns_type,
|
| 414 |
+
filter_domain_specific,
|
| 415 |
+
filter_columns_size
|
| 416 |
],
|
| 417 |
+
leaderboard_table,
|
|
|
|
|
|
|
| 418 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
|
| 420 |
+
for selector in [
|
| 421 |
+
shown_columns,
|
| 422 |
+
filter_columns_type,
|
| 423 |
+
filter_domain_specific,
|
| 424 |
+
filter_columns_size,
|
| 425 |
+
]:
|
| 426 |
+
selector.change(
|
| 427 |
+
update_table,
|
| 428 |
+
[
|
| 429 |
+
hidden_leaderboard_table_for_search,
|
| 430 |
+
shown_columns,
|
| 431 |
+
search_bar,
|
| 432 |
+
filter_columns_type,
|
| 433 |
+
filter_domain_specific,
|
| 434 |
+
filter_columns_size
|
| 435 |
+
],
|
| 436 |
+
leaderboard_table,
|
| 437 |
+
queue=True,
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
| 441 |
+
with gr.Accordion("Response generation", open=False):
|
| 442 |
+
render_generation_templates(task="open_ended", generation_type="response_generation")
|
| 443 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
| 444 |
+
render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
| 445 |
+
|
| 446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
| 450 |
with gr.Row():
|
| 451 |
with gr.Column():
|
|
|
|
| 453 |
search_bar = gr.Textbox(
|
| 454 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 455 |
show_label=False,
|
| 456 |
+
elem_id="search-bar-med-safety",
|
| 457 |
)
|
| 458 |
with gr.Row():
|
| 459 |
shown_columns = gr.CheckboxGroup(
|
|
|
|
| 464 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
|
| 465 |
],
|
| 466 |
label="Select columns to show",
|
| 467 |
+
elem_id="column-select-med-safety",
|
| 468 |
interactive=True,
|
| 469 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
with gr.Column(min_width=320):
|
|
|
|
| 471 |
filter_columns_type = gr.CheckboxGroup(
|
| 472 |
label="Model Types",
|
| 473 |
choices=[t.to_str() for t in ModelType],
|
| 474 |
value=[t.to_str() for t in ModelType],
|
| 475 |
interactive=True,
|
| 476 |
+
elem_id="filter-columns-type-med-safety",
|
| 477 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
filter_domain_specific = gr.CheckboxGroup(
|
| 479 |
label="Domain Specificity",
|
| 480 |
choices=["🏥 Clinical models", "Generic models"],
|
| 481 |
value=["🏥 Clinical models", "Generic models"],
|
| 482 |
interactive=True,
|
| 483 |
+
elem_id="filter-domain-specific-med-safety",
|
| 484 |
)
|
| 485 |
filter_columns_size = gr.CheckboxGroup(
|
| 486 |
label="Model sizes (in billions of parameters)",
|
| 487 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 488 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 489 |
interactive=True,
|
| 490 |
+
elem_id="filter-columns-size-med-safety",
|
| 491 |
)
|
| 492 |
|
| 493 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")
|
| 494 |
|
| 495 |
+
leaderboard_table = gr.Dataframe(
|
| 496 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 497 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 498 |
datatype=TYPES,
|
| 499 |
+
elem_id="leaderboard-table-med-safety",
|
| 500 |
interactive=False,
|
| 501 |
visible=True,
|
| 502 |
)
|
| 503 |
|
| 504 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
|
|
|
| 505 |
value=datasets_original_df[MED_SAFETY_COLS],
|
| 506 |
headers=MED_SAFETY_COLS,
|
| 507 |
datatype=TYPES,
|
| 508 |
visible=False,
|
| 509 |
)
|
| 510 |
+
|
|
|
|
| 511 |
search_bar.submit(
|
| 512 |
update_table,
|
| 513 |
[
|
|
|
|
| 517 |
filter_columns_type,
|
| 518 |
filter_domain_specific,
|
| 519 |
filter_columns_size
|
|
|
|
| 520 |
],
|
| 521 |
leaderboard_table,
|
| 522 |
)
|
| 523 |
+
|
| 524 |
for selector in [
|
| 525 |
shown_columns,
|
| 526 |
filter_columns_type,
|
| 527 |
filter_domain_specific,
|
| 528 |
filter_columns_size,
|
|
|
|
| 529 |
]:
|
| 530 |
selector.change(
|
| 531 |
update_table,
|
|
|
|
| 540 |
leaderboard_table,
|
| 541 |
queue=True,
|
| 542 |
)
|
| 543 |
+
|
| 544 |
with gr.Accordion("💬 Generation templates", open=False):
|
| 545 |
with gr.Accordion("Response generation", open=False):
|
| 546 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="response_generation")
|
| 547 |
with gr.Accordion("Scoring Rubric", open=False):
|
| 548 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
| 549 |
+
|
| 550 |
with gr.TabItem("🏅 Medical Summarization", elem_id="llm-benchmark-tab-table", id=3):
|
| 551 |
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
| 552 |
with gr.Row():
|
|
|
|
| 555 |
search_bar = gr.Textbox(
|
| 556 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 557 |
show_label=False,
|
| 558 |
+
elem_id="search-bar-med-summarization",
|
| 559 |
)
|
| 560 |
with gr.Row():
|
| 561 |
shown_columns = gr.CheckboxGroup(
|
|
|
|
| 566 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
|
| 567 |
],
|
| 568 |
label="Select columns to show",
|
| 569 |
+
elem_id="column-select-med-summarization",
|
| 570 |
interactive=True,
|
| 571 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
with gr.Column(min_width=320):
|
|
|
|
| 573 |
filter_columns_type = gr.CheckboxGroup(
|
| 574 |
label="Model Types",
|
| 575 |
choices=[t.to_str() for t in ModelType],
|
| 576 |
value=[t.to_str() for t in ModelType],
|
| 577 |
interactive=True,
|
| 578 |
+
elem_id="filter-columns-type-med-summarization",
|
| 579 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 580 |
filter_domain_specific = gr.CheckboxGroup(
|
| 581 |
label="Domain Specificity",
|
| 582 |
choices=["🏥 Clinical models", "Generic models"],
|
| 583 |
value=["🏥 Clinical models", "Generic models"],
|
| 584 |
interactive=True,
|
| 585 |
+
elem_id="filter-domain-specific-med-summarization",
|
| 586 |
)
|
| 587 |
filter_columns_size = gr.CheckboxGroup(
|
| 588 |
label="Model sizes (in billions of parameters)",
|
| 589 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 590 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 591 |
interactive=True,
|
| 592 |
+
elem_id="filter-columns-size-med-summarization",
|
| 593 |
)
|
| 594 |
|
| 595 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")
|
| 596 |
|
| 597 |
+
leaderboard_table = gr.Dataframe(
|
| 598 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 599 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 600 |
datatype=TYPES,
|
| 601 |
+
elem_id="leaderboard-table-med-summarization",
|
| 602 |
interactive=False,
|
| 603 |
visible=True,
|
| 604 |
)
|
| 605 |
|
| 606 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
|
|
|
| 607 |
value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
|
| 608 |
headers=MEDICAL_SUMMARIZATION_COLS,
|
| 609 |
datatype=TYPES,
|
| 610 |
visible=False,
|
| 611 |
)
|
| 612 |
+
|
|
|
|
| 613 |
search_bar.submit(
|
| 614 |
update_table,
|
| 615 |
[
|
|
|
|
| 619 |
filter_columns_type,
|
| 620 |
filter_domain_specific,
|
| 621 |
filter_columns_size
|
|
|
|
| 622 |
],
|
| 623 |
leaderboard_table,
|
| 624 |
)
|
| 625 |
+
|
| 626 |
for selector in [
|
| 627 |
shown_columns,
|
| 628 |
filter_columns_type,
|
| 629 |
filter_domain_specific,
|
| 630 |
filter_columns_size,
|
|
|
|
| 631 |
]:
|
| 632 |
selector.change(
|
| 633 |
update_table,
|
|
|
|
| 642 |
leaderboard_table,
|
| 643 |
queue=True,
|
| 644 |
)
|
| 645 |
+
|
| 646 |
with gr.Accordion("💬 Generation templates", open=False):
|
| 647 |
with gr.Accordion("Response generation", open=False):
|
| 648 |
system_prompt, user_prompt = render_generation_templates(task="medical_summarization", generation_type="response_generation")
|
| 649 |
with gr.Accordion("Question generation", open=False):
|
| 650 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
| 651 |
with gr.Accordion("Cross Examination", open=False):
|
| 652 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
| 653 |
+
|
| 654 |
with gr.TabItem("🏅 Note generation", elem_id="llm-benchmark-tab-table", id=4):
|
| 655 |
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
| 656 |
+
with gr.Tabs(elem_classes="tab-buttons2") as note_tabs:
|
| 657 |
+
with gr.TabItem("ACI Bench", elem_id="llm-benchmark-tab-aci", id=0):
|
| 658 |
with gr.Row():
|
| 659 |
with gr.Column():
|
| 660 |
with gr.Row():
|
| 661 |
search_bar = gr.Textbox(
|
| 662 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 663 |
show_label=False,
|
| 664 |
+
elem_id="search-bar-aci",
|
| 665 |
)
|
| 666 |
with gr.Row():
|
| 667 |
shown_columns = gr.CheckboxGroup(
|
|
|
|
| 672 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
|
| 673 |
],
|
| 674 |
label="Select columns to show",
|
| 675 |
+
elem_id="column-select-aci",
|
| 676 |
interactive=True,
|
| 677 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 678 |
with gr.Column(min_width=320):
|
|
|
|
| 679 |
filter_columns_type = gr.CheckboxGroup(
|
| 680 |
label="Model Types",
|
| 681 |
choices=[t.to_str() for t in ModelType],
|
| 682 |
value=[t.to_str() for t in ModelType],
|
| 683 |
interactive=True,
|
| 684 |
+
elem_id="filter-columns-type-aci",
|
| 685 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 686 |
filter_domain_specific = gr.CheckboxGroup(
|
| 687 |
label="Domain Specificity",
|
| 688 |
choices=["🏥 Clinical models", "Generic models"],
|
| 689 |
value=["🏥 Clinical models", "Generic models"],
|
| 690 |
interactive=True,
|
| 691 |
+
elem_id="filter-domain-specific-aci",
|
| 692 |
)
|
| 693 |
filter_columns_size = gr.CheckboxGroup(
|
| 694 |
label="Model sizes (in billions of parameters)",
|
| 695 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 696 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 697 |
interactive=True,
|
| 698 |
+
elem_id="filter-columns-size-aci",
|
| 699 |
)
|
| 700 |
|
| 701 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")
|
| 702 |
|
| 703 |
+
leaderboard_table = gr.Dataframe(
|
| 704 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 705 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 706 |
datatype=TYPES,
|
| 707 |
+
elem_id="leaderboard-table-aci",
|
| 708 |
interactive=False,
|
| 709 |
visible=True,
|
| 710 |
)
|
| 711 |
|
| 712 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
|
|
|
| 713 |
value=datasets_original_df[ACI_COLS],
|
| 714 |
headers=ACI_COLS,
|
| 715 |
datatype=TYPES,
|
| 716 |
visible=False,
|
| 717 |
)
|
| 718 |
+
|
|
|
|
| 719 |
search_bar.submit(
|
| 720 |
update_table,
|
| 721 |
[
|
|
|
|
| 725 |
filter_columns_type,
|
| 726 |
filter_domain_specific,
|
| 727 |
filter_columns_size
|
|
|
|
| 728 |
],
|
| 729 |
leaderboard_table,
|
| 730 |
)
|
| 731 |
+
|
| 732 |
for selector in [
|
| 733 |
shown_columns,
|
| 734 |
filter_columns_type,
|
| 735 |
filter_domain_specific,
|
| 736 |
filter_columns_size,
|
|
|
|
| 737 |
]:
|
| 738 |
selector.change(
|
| 739 |
update_table,
|
|
|
|
| 748 |
leaderboard_table,
|
| 749 |
queue=True,
|
| 750 |
)
|
| 751 |
+
|
| 752 |
+
with gr.TabItem("SOAP Notes", elem_id="llm-benchmark-tab-soap", id=1):
|
| 753 |
with gr.Row():
|
| 754 |
with gr.Column():
|
| 755 |
with gr.Row():
|
| 756 |
search_bar = gr.Textbox(
|
| 757 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 758 |
show_label=False,
|
| 759 |
+
elem_id="search-bar-soap",
|
| 760 |
)
|
| 761 |
with gr.Row():
|
| 762 |
shown_columns = gr.CheckboxGroup(
|
|
|
|
| 767 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
|
| 768 |
],
|
| 769 |
label="Select columns to show",
|
| 770 |
+
elem_id="column-select-soap",
|
| 771 |
interactive=True,
|
| 772 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 773 |
with gr.Column(min_width=320):
|
|
|
|
| 774 |
filter_columns_type = gr.CheckboxGroup(
|
| 775 |
label="Model Types",
|
| 776 |
choices=[t.to_str() for t in ModelType],
|
| 777 |
value=[t.to_str() for t in ModelType],
|
| 778 |
interactive=True,
|
| 779 |
+
elem_id="filter-columns-type-soap",
|
| 780 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 781 |
filter_domain_specific = gr.CheckboxGroup(
|
| 782 |
label="Domain Specificity",
|
| 783 |
choices=["🏥 Clinical models", "Generic models"],
|
| 784 |
value=["🏥 Clinical models", "Generic models"],
|
| 785 |
interactive=True,
|
| 786 |
+
elem_id="filter-domain-specific-soap",
|
| 787 |
)
|
| 788 |
filter_columns_size = gr.CheckboxGroup(
|
| 789 |
label="Model sizes (in billions of parameters)",
|
| 790 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 791 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 792 |
interactive=True,
|
| 793 |
+
elem_id="filter-columns-size-soap",
|
| 794 |
)
|
| 795 |
|
| 796 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")
|
| 797 |
|
| 798 |
+
leaderboard_table = gr.Dataframe(
|
| 799 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 800 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 801 |
datatype=TYPES,
|
| 802 |
+
elem_id="leaderboard-table-soap",
|
| 803 |
interactive=False,
|
| 804 |
visible=True,
|
| 805 |
)
|
| 806 |
|
| 807 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
|
|
|
| 808 |
value=datasets_original_df[SOAP_COLS],
|
| 809 |
headers=SOAP_COLS,
|
| 810 |
datatype=TYPES,
|
| 811 |
visible=False,
|
| 812 |
)
|
| 813 |
+
|
|
|
|
| 814 |
search_bar.submit(
|
| 815 |
update_table,
|
| 816 |
[
|
|
|
|
| 820 |
filter_columns_type,
|
| 821 |
filter_domain_specific,
|
| 822 |
filter_columns_size
|
|
|
|
| 823 |
],
|
| 824 |
leaderboard_table,
|
| 825 |
)
|
| 826 |
+
|
| 827 |
for selector in [
|
| 828 |
shown_columns,
|
| 829 |
filter_columns_type,
|
| 830 |
filter_domain_specific,
|
| 831 |
filter_columns_size,
|
|
|
|
| 832 |
]:
|
| 833 |
selector.change(
|
| 834 |
update_table,
|
|
|
|
| 843 |
leaderboard_table,
|
| 844 |
queue=True,
|
| 845 |
)
|
| 846 |
+
|
| 847 |
with gr.Accordion("💬 Generation templates", open=False):
|
| 848 |
with gr.Accordion("ACI-Bench Response generation", open=False):
|
| 849 |
system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
|
|
|
|
| 852 |
with gr.Accordion("Question generation", open=False):
|
| 853 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
| 854 |
with gr.Accordion("Cross Examination", open=False):
|
| 855 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
| 856 |
+
|
| 857 |
+
with gr.TabItem("🏅 Closed Ended Evaluation", elem_id="llm-benchmark-tab-closed", id=6):
|
| 858 |
+
with gr.Tabs(elem_classes="tab-buttons2") as closed_tabs:
|
| 859 |
+
# ENGLISH TAB
|
| 860 |
+
with gr.TabItem("English", elem_id="llm-benchmark-tab-closed-english", id=0):
|
| 861 |
+
with gr.Row():
|
| 862 |
+
with gr.Column():
|
| 863 |
+
with gr.Row():
|
| 864 |
+
search_bar = gr.Textbox(
|
| 865 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 866 |
+
show_label=False,
|
| 867 |
+
elem_id="search-bar-closed-english",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 868 |
)
|
| 869 |
+
with gr.Row():
|
| 870 |
+
shown_columns = gr.CheckboxGroup(
|
| 871 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
| 872 |
+
value=[
|
| 873 |
+
c.name
|
| 874 |
+
for c in fields(AutoEvalColumn)
|
| 875 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
| 876 |
+
],
|
| 877 |
+
label="Select columns to show",
|
| 878 |
+
elem_id="column-select-closed-english",
|
| 879 |
interactive=True,
|
|
|
|
| 880 |
)
|
| 881 |
+
with gr.Column(min_width=320):
|
| 882 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 883 |
+
label="Model Types",
|
| 884 |
+
choices=[t.to_str() for t in ModelType],
|
| 885 |
+
value=[t.to_str() for t in ModelType],
|
| 886 |
+
interactive=True,
|
| 887 |
+
elem_id="filter-columns-type-closed-english",
|
| 888 |
+
)
|
| 889 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 890 |
+
label="Domain Specificity",
|
| 891 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 892 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 893 |
+
interactive=True,
|
| 894 |
+
elem_id="filter-domain-specific-closed-english",
|
| 895 |
+
)
|
| 896 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 897 |
+
label="Model sizes (in billions of parameters)",
|
| 898 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 899 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 900 |
+
interactive=True,
|
| 901 |
+
elem_id="filter-columns-size-closed-english",
|
| 902 |
+
)
|
| 903 |
|
| 904 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
| 905 |
+
leaderboard_table = gr.components.Dataframe(
|
| 906 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 907 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 908 |
+
datatype=TYPES,
|
| 909 |
+
elem_id="leaderboard-table-english",
|
| 910 |
+
interactive=False,
|
| 911 |
+
visible=True,
|
| 912 |
+
)
|
| 913 |
+
|
| 914 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 915 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 916 |
+
value=datasets_original_df[DATASET_COLS],
|
| 917 |
+
headers=DATASET_COLS,
|
| 918 |
+
datatype=TYPES,
|
| 919 |
+
visible=False,
|
| 920 |
+
)
|
| 921 |
+
|
| 922 |
+
search_bar.submit(
|
| 923 |
+
update_table,
|
| 924 |
+
[
|
| 925 |
+
hidden_leaderboard_table_for_search,
|
| 926 |
+
shown_columns,
|
| 927 |
+
search_bar,
|
| 928 |
+
filter_columns_type,
|
| 929 |
+
filter_domain_specific,
|
| 930 |
+
filter_columns_size
|
| 931 |
+
],
|
| 932 |
+
leaderboard_table,
|
| 933 |
+
)
|
| 934 |
+
|
| 935 |
+
for selector in [
|
| 936 |
+
shown_columns,
|
| 937 |
+
filter_columns_type,
|
| 938 |
+
filter_domain_specific,
|
| 939 |
+
filter_columns_size,
|
| 940 |
+
]:
|
| 941 |
+
selector.change(
|
| 942 |
update_table,
|
| 943 |
[
|
| 944 |
hidden_leaderboard_table_for_search,
|
|
|
|
| 947 |
filter_columns_type,
|
| 948 |
filter_domain_specific,
|
| 949 |
filter_columns_size
|
|
|
|
| 950 |
],
|
| 951 |
leaderboard_table,
|
| 952 |
+
queue=True,
|
| 953 |
)
|
| 954 |
+
|
| 955 |
+
#MULTILINGUAL TAB - Same level as English tab
|
| 956 |
+
with gr.TabItem("🌍 Multilingual", elem_id="llm-benchmark-tab-table9", id=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 957 |
with gr.Row():
|
| 958 |
+
gr.Markdown("📊 **Dataset Information:** This tab uses the Global MMLU dataset filtering only the subcategory: medical (10.7%)")
|
| 959 |
+
|
|
|
|
|
|
|
|
|
|
| 960 |
with gr.Row():
|
| 961 |
+
with gr.Column():
|
| 962 |
+
with gr.Row():
|
| 963 |
+
search_bar = gr.Textbox(
|
| 964 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 965 |
+
show_label=False,
|
| 966 |
+
elem_id="search-bar",
|
| 967 |
+
)
|
| 968 |
+
|
| 969 |
+
with gr.Row():
|
| 970 |
+
shown_columns = gr.CheckboxGroup(
|
| 971 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
|
| 972 |
+
value=[
|
| 973 |
+
c.name
|
| 974 |
+
for c in fields(AutoEvalColumn)
|
| 975 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)
|
| 976 |
+
],
|
| 977 |
+
label="Select columns to show",
|
| 978 |
+
elem_id="column-select",
|
| 979 |
+
interactive=True,
|
| 980 |
+
)
|
| 981 |
+
with gr.Column(min_width=320):
|
| 982 |
+
# with gr.Box(elem_id="box-filter"):
|
| 983 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 984 |
+
label="Model Types",
|
| 985 |
+
choices=[t.to_str() for t in ModelType],
|
| 986 |
+
value=[t.to_str() for t in ModelType],
|
| 987 |
+
interactive=True,
|
| 988 |
+
elem_id="filter-columns-type",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 989 |
)
|
| 990 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 991 |
+
label="Domain Specificity",
|
| 992 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 993 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 994 |
+
interactive=True,
|
| 995 |
+
elem_id="filter-columns-type",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 996 |
)
|
| 997 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 998 |
+
label="Model sizes (in billions of parameters)",
|
| 999 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 1000 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 1001 |
+
interactive=True,
|
| 1002 |
+
elem_id="filter-columns-size",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1003 |
)
|
|
|
|
|
|
|
| 1004 |
|
| 1005 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="closed_ended_multilingual")
|
| 1006 |
+
leaderboard_table = gr.components.Dataframe(
|
| 1007 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 1008 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 1009 |
+
datatype=TYPES,
|
| 1010 |
+
elem_id="leaderboard-table",
|
| 1011 |
+
interactive=False,
|
| 1012 |
+
visible=True,
|
|
|
|
|
|
|
| 1013 |
)
|
| 1014 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 1015 |
+
value=datasets_original_df[ClosedEndedMultilingual_COLS],
|
| 1016 |
+
headers=ClosedEndedMultilingual_COLS,
|
| 1017 |
+
datatype=TYPES,
|
| 1018 |
+
visible=False,
|
|
|
|
|
|
|
|
|
|
| 1019 |
)
|
| 1020 |
+
|
| 1021 |
+
search_bar.submit(
|
| 1022 |
+
update_table,
|
| 1023 |
+
[
|
| 1024 |
+
hidden_leaderboard_table_for_search,
|
| 1025 |
+
shown_columns,
|
| 1026 |
+
search_bar,
|
| 1027 |
+
filter_columns_type,
|
| 1028 |
+
filter_domain_specific,
|
| 1029 |
+
filter_columns_size
|
| 1030 |
+
# filter_columns_architecture
|
| 1031 |
+
],
|
| 1032 |
+
leaderboard_table,
|
| 1033 |
)
|
| 1034 |
+
for selector in [
|
| 1035 |
+
shown_columns,
|
| 1036 |
+
filter_columns_type,
|
| 1037 |
+
filter_domain_specific,
|
| 1038 |
+
# filter_columns_architecture,
|
| 1039 |
+
filter_columns_size,
|
| 1040 |
+
# deleted_models_visibility,
|
| 1041 |
+
]:
|
| 1042 |
+
selector.change(
|
| 1043 |
+
update_table,
|
| 1044 |
+
[
|
| 1045 |
+
hidden_leaderboard_table_for_search,
|
| 1046 |
+
shown_columns,
|
| 1047 |
+
search_bar,
|
| 1048 |
+
filter_columns_type,
|
| 1049 |
+
filter_domain_specific,
|
| 1050 |
+
filter_columns_size
|
| 1051 |
+
# filter_columns_architecture,
|
| 1052 |
+
],
|
| 1053 |
+
leaderboard_table,
|
| 1054 |
+
queue=True,
|
| 1055 |
+
)
|
| 1056 |
+
with gr.Row():
|
| 1057 |
+
with gr.Accordion("📙 Citation", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1058 |
citation_button = gr.Textbox(
|
| 1059 |
value=CITATION_BUTTON_TEXT,
|
| 1060 |
label=CITATION_BUTTON_LABEL,
|
|
|
|
| 1066 |
scheduler = BackgroundScheduler()
|
| 1067 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 1068 |
scheduler.start()
|
| 1069 |
+
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|
app_original.py
ADDED
|
@@ -0,0 +1,1276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
+
from huggingface_hub import snapshot_download
|
| 7 |
+
|
| 8 |
+
from src.about import (
|
| 9 |
+
CITATION_BUTTON_LABEL,
|
| 10 |
+
CITATION_BUTTON_TEXT,
|
| 11 |
+
EVALUATION_QUEUE_TEXT,
|
| 12 |
+
INTRODUCTION_TEXT,
|
| 13 |
+
LLM_BENCHMARKS_TEXT_1,
|
| 14 |
+
LLM_BENCHMARKS_TEXT_2,
|
| 15 |
+
CROSS_EVALUATION_METRICS,
|
| 16 |
+
NOTE_GENERATION_METRICS,
|
| 17 |
+
# EVALUATION_EXAMPLE_IMG,
|
| 18 |
+
# LLM_BENCHMARKS_TEXT_2,
|
| 19 |
+
# ENTITY_DISTRIBUTION_IMG,
|
| 20 |
+
# LLM_BENCHMARKS_TEXT_3,
|
| 21 |
+
TITLE,
|
| 22 |
+
LOGO,
|
| 23 |
+
FIVE_PILLAR_DIAGRAM
|
| 24 |
+
)
|
| 25 |
+
from src.display.css_html_js import custom_css
|
| 26 |
+
# changes to be made here
|
| 27 |
+
from src.display.utils import (
|
| 28 |
+
DATASET_BENCHMARK_COLS,
|
| 29 |
+
OPEN_ENDED_BENCHMARK_COLS,
|
| 30 |
+
MED_SAFETY_BENCHMARK_COLS,
|
| 31 |
+
MEDICAL_SUMMARIZATION_BENCHMARK_COLS,
|
| 32 |
+
ACI_BENCHMARK_COLS,
|
| 33 |
+
SOAP_BENCHMARK_COLS,
|
| 34 |
+
#CLOSED_ENDED_ARABIC_BENCHMARK_COLS,
|
| 35 |
+
DATASET_COLS,
|
| 36 |
+
OPEN_ENDED_COLS,
|
| 37 |
+
MED_SAFETY_COLS,
|
| 38 |
+
MEDICAL_SUMMARIZATION_COLS,
|
| 39 |
+
ACI_COLS,
|
| 40 |
+
SOAP_COLS,
|
| 41 |
+
#CLOSED_ENDED_ARABIC_COLS,
|
| 42 |
+
EVAL_COLS,
|
| 43 |
+
EVAL_TYPES,
|
| 44 |
+
NUMERIC_INTERVALS,
|
| 45 |
+
TYPES,
|
| 46 |
+
AutoEvalColumn,
|
| 47 |
+
ModelType,
|
| 48 |
+
ModelArch,
|
| 49 |
+
PromptTemplateName,
|
| 50 |
+
Precision,
|
| 51 |
+
WeightType,
|
| 52 |
+
fields,
|
| 53 |
+
render_generation_templates,
|
| 54 |
+
OpenEndedArabic_COLS,
|
| 55 |
+
OpenEndedArabic_BENCHMARK_COLS,
|
| 56 |
+
OpenEndedFrench_COLS,
|
| 57 |
+
OpenEndedFrench_BENCHMARK_COLS,
|
| 58 |
+
OpenEndedPortuguese_COLS,
|
| 59 |
+
OpenEndedPortuguese_BENCHMARK_COLS,
|
| 60 |
+
OpenEndedRomanian_COLS,
|
| 61 |
+
OpenEndedRomanian_BENCHMARK_COLS,
|
| 62 |
+
OpenEndedGreek_COLS,
|
| 63 |
+
OpenEndedGreek_BENCHMARK_COLS,
|
| 64 |
+
OpenEndedSpanish_COLS,
|
| 65 |
+
OpenEndedSpanish_BENCHMARK_COLS,
|
| 66 |
+
ClosedEndedMultilingual_COLS,
|
| 67 |
+
ClosedEndedMultilingual_BENCHMARK_COLS,
|
| 68 |
+
|
| 69 |
+
#closed_ended_multilingual,
|
| 70 |
+
# Open_EndedArabic,
|
| 71 |
+
# Open_EndedSpanish,
|
| 72 |
+
# Open_EndedFrench,
|
| 73 |
+
# Open_EndedPortuguese,
|
| 74 |
+
# Open_EndedRomanian,
|
| 75 |
+
# Open_EndedGreek,
|
| 76 |
+
# Open_EndedSpanish,
|
| 77 |
+
# Open_EndedArabic,
|
| 78 |
+
# Open_EndedFrench,
|
| 79 |
+
|
| 80 |
+
)
|
| 81 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
| 82 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 83 |
+
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG
|
| 84 |
+
|
| 85 |
+
def restart_space():
|
| 86 |
+
API.restart_space(repo_id=REPO_ID)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
try:
|
| 90 |
+
print(EVAL_REQUESTS_PATH)
|
| 91 |
+
snapshot_download(
|
| 92 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 93 |
+
)
|
| 94 |
+
except Exception:
|
| 95 |
+
restart_space()
|
| 96 |
+
try:
|
| 97 |
+
print(EVAL_RESULTS_PATH)
|
| 98 |
+
snapshot_download(
|
| 99 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 100 |
+
)
|
| 101 |
+
except Exception:
|
| 102 |
+
restart_space()
|
| 103 |
+
|
| 104 |
+
# Span based results
|
| 105 |
+
# changes to be made here
|
| 106 |
+
|
| 107 |
+
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
|
| 108 |
+
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
| 109 |
+
|
| 110 |
+
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
|
| 111 |
+
open_ended_leaderboard_df = open_ended_original_df.copy()
|
| 112 |
+
|
| 113 |
+
_, med_safety_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MED_SAFETY_COLS, MED_SAFETY_BENCHMARK_COLS, "score", "med_safety")
|
| 114 |
+
med_safety_leaderboard_df = med_safety_original_df.copy()
|
| 115 |
+
|
| 116 |
+
_, medical_summarization_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MEDICAL_SUMMARIZATION_COLS, MEDICAL_SUMMARIZATION_BENCHMARK_COLS, "score", "medical_summarization")
|
| 117 |
+
medical_summarization_leaderboard_df = medical_summarization_original_df.copy()
|
| 118 |
+
|
| 119 |
+
_, aci_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ACI_COLS, ACI_BENCHMARK_COLS, "score", "aci")
|
| 120 |
+
aci_leaderboard_df = aci_original_df.copy()
|
| 121 |
+
|
| 122 |
+
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
|
| 123 |
+
soap_leaderboard_df = soap_original_df.copy()
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
|
| 127 |
+
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
|
| 128 |
+
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
|
| 129 |
+
_, open_ended_romanian_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, "score", "open_ended_romanian")
|
| 130 |
+
_, open_ended_greek_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedGreek_COLS, OpenEndedGreek_BENCHMARK_COLS, "score", "open_ended_greek")
|
| 131 |
+
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
|
| 132 |
+
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
open_ended_arabic_leaderboard_df = open_ended_arabic_df.copy()
|
| 136 |
+
open_ended_french_leaderboard_df = open_ended_french_df.copy()
|
| 137 |
+
open_ended_portuguese_leaderboard_df = open_ended_portuguese_df.copy()
|
| 138 |
+
open_ended_romanian_leaderboard_df = open_ended_romanian_df.copy()
|
| 139 |
+
open_ended_greek_leaderboard_df = open_ended_greek_df.copy()
|
| 140 |
+
open_ended_spanish_leaderboard_df = open_ended_spanish_df.copy()
|
| 141 |
+
closed_ended_multilingual_leaderboard_df = closed_ended_multilingual_df.copy()
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# if PRIVATE_REPO:
|
| 145 |
+
# _, closed_ended_arabic_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, CLOSED_ENDED_ARABIC_COLS, CLOSED_ENDED_ARABIC_BENCHMARK_COLS, "score", "closed_ended_arabic")
|
| 146 |
+
# closed_ended_arabic_leaderboard_df = closed_ended_arabic_original_df.copy()
|
| 147 |
+
|
| 148 |
+
# breakpoint()
|
| 149 |
+
# # Token based results
|
| 150 |
+
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
| 151 |
+
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
|
| 152 |
+
|
| 153 |
+
# _, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types")
|
| 154 |
+
# token_based_types_leaderboard_df = token_based_types_original_df.copy()
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
(
|
| 158 |
+
finished_eval_queue_df,
|
| 159 |
+
running_eval_queue_df,
|
| 160 |
+
pending_eval_queue_df,
|
| 161 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 162 |
+
|
| 163 |
+
# breakpoint()
|
| 164 |
+
def update_df(shown_columns, subset="datasets"):
|
| 165 |
+
# changes to be made here
|
| 166 |
+
if subset == "datasets":
|
| 167 |
+
leaderboard_table_df = harness_datasets_leaderboard_df.copy()
|
| 168 |
+
hidden_leader_board_df = harness_datasets_original_df
|
| 169 |
+
elif subset == "open_ended":
|
| 170 |
+
leaderboard_table_df = open_ended_leaderboard_df.copy()
|
| 171 |
+
hidden_leader_board_df = open_ended_original_df
|
| 172 |
+
elif subset == "med_safety":
|
| 173 |
+
leaderboard_table_df = med_safety_leaderboard_df.copy()
|
| 174 |
+
hidden_leader_board_df = med_safety_original_df
|
| 175 |
+
elif subset == "medical_summarization":
|
| 176 |
+
leaderboard_table_df = medical_summarization_leaderboard_df.copy()
|
| 177 |
+
hidden_leader_board_df = medical_summarization_original_df
|
| 178 |
+
elif subset == "aci":
|
| 179 |
+
leaderboard_table_df = aci_leaderboard_df.copy()
|
| 180 |
+
hidden_leader_board_df = aci_original_df
|
| 181 |
+
elif subset == "soap":
|
| 182 |
+
leaderboard_table_df = soap_leaderboard_df.copy()
|
| 183 |
+
hidden_leader_board_df = soap_original_df
|
| 184 |
+
elif subset == "open_ended_arabic":
|
| 185 |
+
leaderboard_table_df = open_ended_arabic_df.copy()
|
| 186 |
+
hidden_leader_board_df = open_ended_arabic_df
|
| 187 |
+
elif subset == "open_ended_french":
|
| 188 |
+
leaderboard_table_df = open_ended_french_df.copy()
|
| 189 |
+
hidden_leader_board_df = open_ended_french_df
|
| 190 |
+
elif subset == "open_ended_portuguese":
|
| 191 |
+
leaderboard_table_df = open_ended_portuguese_df.copy()
|
| 192 |
+
hidden_leader_board_df = open_ended_portuguese_df
|
| 193 |
+
elif subset == "open_ended_romanian":
|
| 194 |
+
leaderboard_table_df = open_ended_romanian_df.copy()
|
| 195 |
+
hidden_leader_board_df = open_ended_romanian_df
|
| 196 |
+
elif subset == "open_ended_greek":
|
| 197 |
+
leaderboard_table_df = open_ended_greek_df.copy()
|
| 198 |
+
hidden_leader_board_df = open_ended_greek_df
|
| 199 |
+
elif subset == "open_ended_spanish":
|
| 200 |
+
leaderboard_table_df = open_ended_spanish_df.copy()
|
| 201 |
+
hidden_leader_board_df = open_ended_spanish_df
|
| 202 |
+
elif subset == "closed_ended_multilingual":
|
| 203 |
+
leaderboard_table_df = closed_ended_multilingual_df.copy()
|
| 204 |
+
hidden_leader_board_df = closed_ended_multilingual_df
|
| 205 |
+
|
| 206 |
+
# else:
|
| 207 |
+
# match evaluation_metric:
|
| 208 |
+
# case "Span Based":
|
| 209 |
+
# leaderboard_table_df = span_based_types_leaderboard_df.copy()
|
| 210 |
+
# hidden_leader_board_df = span_based_types_original_df
|
| 211 |
+
# case "Token Based":
|
| 212 |
+
# leaderboard_table_df = token_based_types_leaderboard_df.copy()
|
| 213 |
+
# hidden_leader_board_df = token_based_types_original_df
|
| 214 |
+
# case _:
|
| 215 |
+
# pass
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
| 219 |
+
# breakpoint()
|
| 220 |
+
return leaderboard_table_df[value_cols], hidden_leader_board_df
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
# Searching and filtering
|
| 224 |
+
def update_table(
|
| 225 |
+
hidden_df: pd.DataFrame,
|
| 226 |
+
columns: list,
|
| 227 |
+
query: str = "",
|
| 228 |
+
type_query: list = None,
|
| 229 |
+
domain_specific_query: list = None,
|
| 230 |
+
size_query: list = None,
|
| 231 |
+
precision_query: str = None,
|
| 232 |
+
show_deleted: bool = False,
|
| 233 |
+
):
|
| 234 |
+
# breakpoint()
|
| 235 |
+
filtered_df = filter_models(hidden_df, type_query, domain_specific_query, size_query, precision_query, show_deleted)
|
| 236 |
+
# breakpoint()
|
| 237 |
+
filtered_df = filter_queries(query, filtered_df)
|
| 238 |
+
# breakpoint()
|
| 239 |
+
df = select_columns(filtered_df, columns, list(hidden_df.columns))
|
| 240 |
+
# breakpoint()
|
| 241 |
+
return df
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 245 |
+
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame:
|
| 249 |
+
always_here_cols = [
|
| 250 |
+
AutoEvalColumn.model_type_symbol.name,
|
| 251 |
+
AutoEvalColumn.model.name,
|
| 252 |
+
]
|
| 253 |
+
# We use COLS to maintain sorting
|
| 254 |
+
filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]]
|
| 255 |
+
return filtered_df
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 259 |
+
final_df = []
|
| 260 |
+
if query != "":
|
| 261 |
+
queries = [q.strip() for q in query.split(";")]
|
| 262 |
+
for _q in queries:
|
| 263 |
+
_q = _q.strip()
|
| 264 |
+
if _q != "":
|
| 265 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
| 266 |
+
if len(temp_filtered_df) > 0:
|
| 267 |
+
final_df.append(temp_filtered_df)
|
| 268 |
+
if len(final_df) > 0:
|
| 269 |
+
filtered_df = pd.concat(final_df)
|
| 270 |
+
filtered_df = filtered_df.drop_duplicates(
|
| 271 |
+
subset=[
|
| 272 |
+
AutoEvalColumn.model.name,
|
| 273 |
+
# AutoEvalColumn.precision.name,
|
| 274 |
+
# AutoEvalColumn.revision.name,
|
| 275 |
+
]
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
return filtered_df
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def filter_models(
|
| 282 |
+
df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 283 |
+
) -> pd.DataFrame:
|
| 284 |
+
# Show all models
|
| 285 |
+
# if show_deleted:
|
| 286 |
+
# filtered_df = df
|
| 287 |
+
# else: # Show only still on the hub models
|
| 288 |
+
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 289 |
+
|
| 290 |
+
filtered_df = df
|
| 291 |
+
|
| 292 |
+
if type_query is not None:
|
| 293 |
+
type_name = [t.split(" ")[1] for t in type_query]
|
| 294 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type.name].isin(type_name)]
|
| 295 |
+
|
| 296 |
+
if domain_specific_query is not None:
|
| 297 |
+
domain_specifics = []
|
| 298 |
+
if "🏥 Clinical models" in domain_specific_query:
|
| 299 |
+
domain_specifics.append(True)
|
| 300 |
+
if "Generic models" in domain_specific_query:
|
| 301 |
+
domain_specifics.append(False)
|
| 302 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]
|
| 303 |
+
|
| 304 |
+
# if architecture_query is not None:
|
| 305 |
+
# arch_types = [t for t in architecture_query]
|
| 306 |
+
# filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)]
|
| 307 |
+
# # filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])]
|
| 308 |
+
|
| 309 |
+
if precision_query is not None:
|
| 310 |
+
if AutoEvalColumn.precision.name in df.columns:
|
| 311 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 312 |
+
|
| 313 |
+
if size_query is not None:
|
| 314 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 315 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 316 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 317 |
+
filtered_df = filtered_df.loc[mask]
|
| 318 |
+
|
| 319 |
+
return filtered_df
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
demo = gr.Blocks(css=custom_css)
|
| 323 |
+
with demo:
|
| 324 |
+
print("hello")
|
| 325 |
+
gr.HTML(LOGO)
|
| 326 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 332 |
+
with gr.TabItem("🌍 Open Ended MultilingualEvaluation", elem_id="llm-benchmark-tab-table", id=11):
|
| 333 |
+
with gr.Tabs(elem_classes="tab-buttons6") as tabs:
|
| 334 |
+
with gr.TabItem("English", elem_id="llm-benchmark-tab-table10", id=0):
|
| 335 |
+
with gr.Row():
|
| 336 |
+
with gr.Column():
|
| 337 |
+
with gr.Row():
|
| 338 |
+
search_bar = gr.Textbox(
|
| 339 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 340 |
+
show_label=False,
|
| 341 |
+
elem_id="search-bar",
|
| 342 |
+
)
|
| 343 |
+
with gr.Row():
|
| 344 |
+
shown_columns = gr.CheckboxGroup(
|
| 345 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
| 346 |
+
value=[
|
| 347 |
+
c.name
|
| 348 |
+
for c in fields(AutoEvalColumn)
|
| 349 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
| 350 |
+
],
|
| 351 |
+
label="Select columns to show",
|
| 352 |
+
elem_id="column-select",
|
| 353 |
+
interactive=True,
|
| 354 |
+
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
with gr.Column(min_width=320):
|
| 358 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 359 |
+
label="Model Types",
|
| 360 |
+
choices=[t.to_str() for t in ModelType],
|
| 361 |
+
value=[t.to_str() for t in ModelType],
|
| 362 |
+
interactive=True,
|
| 363 |
+
elem_id="filter-columns-type",
|
| 364 |
+
)
|
| 365 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 366 |
+
label="Domain Specificity",
|
| 367 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 368 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 369 |
+
interactive=True,
|
| 370 |
+
elem_id="filter-columns-type",
|
| 371 |
+
)
|
| 372 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 373 |
+
label="Domain Specificity",
|
| 374 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 375 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 376 |
+
interactive=True,
|
| 377 |
+
elem_id="filter-columns-type",
|
| 378 |
+
)
|
| 379 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 380 |
+
label="Model sizes (in billions of parameters)",
|
| 381 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 382 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 383 |
+
interactive=True,
|
| 384 |
+
elem_id="filter-columns-size",
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="open_ended")
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
leaderboard_table = gr.components.Dataframe(
|
| 391 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 392 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 393 |
+
datatype=TYPES,
|
| 394 |
+
elem_id="leaderboard-table",
|
| 395 |
+
interactive=False,
|
| 396 |
+
visible=True,
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 400 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 401 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
| 402 |
+
headers=OPEN_ENDED_COLS,
|
| 403 |
+
datatype=TYPES,
|
| 404 |
+
visible=False,
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
search_bar.submit(
|
| 409 |
+
update_table,
|
| 410 |
+
[
|
| 411 |
+
hidden_leaderboard_table_for_search,
|
| 412 |
+
shown_columns,
|
| 413 |
+
search_bar,
|
| 414 |
+
filter_columns_type,
|
| 415 |
+
filter_domain_specific,
|
| 416 |
+
filter_columns_size
|
| 417 |
+
# filter_columns_architecture
|
| 418 |
+
],
|
| 419 |
+
leaderboard_table,
|
| 420 |
+
)
|
| 421 |
+
for selector in [
|
| 422 |
+
shown_columns,
|
| 423 |
+
filter_columns_type,
|
| 424 |
+
filter_domain_specific,
|
| 425 |
+
# filter_columns_architecture,
|
| 426 |
+
filter_columns_size,
|
| 427 |
+
# deleted_models_visibility,
|
| 428 |
+
]:
|
| 429 |
+
selector.change(
|
| 430 |
+
update_table,
|
| 431 |
+
[
|
| 432 |
+
hidden_leaderboard_table_for_search,
|
| 433 |
+
shown_columns,
|
| 434 |
+
search_bar,
|
| 435 |
+
filter_columns_type,
|
| 436 |
+
filter_domain_specific,
|
| 437 |
+
filter_columns_size
|
| 438 |
+
# filter_columns_architecture,
|
| 439 |
+
],
|
| 440 |
+
leaderboard_table,
|
| 441 |
+
queue=True,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
| 446 |
+
with gr.Accordion("Response generation", open=False):
|
| 447 |
+
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="response_generation")
|
| 448 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
| 449 |
+
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
| 453 |
+
with gr.Row():
|
| 454 |
+
with gr.Column():
|
| 455 |
+
with gr.Row():
|
| 456 |
+
search_bar = gr.Textbox(
|
| 457 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 458 |
+
show_label=False,
|
| 459 |
+
elem_id="search-bar",
|
| 460 |
+
)
|
| 461 |
+
with gr.Row():
|
| 462 |
+
shown_columns = gr.CheckboxGroup(
|
| 463 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
| 464 |
+
value=[
|
| 465 |
+
c.name
|
| 466 |
+
for c in fields(AutoEvalColumn)
|
| 467 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
| 468 |
+
],
|
| 469 |
+
label="Select columns to show",
|
| 470 |
+
elem_id="column-select",
|
| 471 |
+
interactive=True,
|
| 472 |
+
)
|
| 473 |
+
# with gr.Row():
|
| 474 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 475 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 476 |
+
# )
|
| 477 |
+
with gr.Column(min_width=320):
|
| 478 |
+
# with gr.Box(elem_id="box-filter"):
|
| 479 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 480 |
+
label="Model Types",
|
| 481 |
+
choices=[t.to_str() for t in ModelType],
|
| 482 |
+
value=[t.to_str() for t in ModelType],
|
| 483 |
+
interactive=True,
|
| 484 |
+
elem_id="filter-columns-type",
|
| 485 |
+
)
|
| 486 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
| 487 |
+
# label="Architecture Types",
|
| 488 |
+
# choices=[i.value.name for i in ModelArch],
|
| 489 |
+
# value=[i.value.name for i in ModelArch],
|
| 490 |
+
# interactive=True,
|
| 491 |
+
# elem_id="filter-columns-architecture",
|
| 492 |
+
# )
|
| 493 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 494 |
+
label="Domain Specificity",
|
| 495 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 496 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 497 |
+
interactive=True,
|
| 498 |
+
elem_id="filter-columns-type",
|
| 499 |
+
)
|
| 500 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 501 |
+
label="Model sizes (in billions of parameters)",
|
| 502 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 503 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 504 |
+
interactive=True,
|
| 505 |
+
elem_id="filter-columns-size",
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="open_ended")
|
| 509 |
+
|
| 510 |
+
leaderboard_table = gr.components.Dataframe(
|
| 511 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 512 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 513 |
+
datatype=TYPES,
|
| 514 |
+
elem_id="leaderboard-table",
|
| 515 |
+
interactive=False,
|
| 516 |
+
visible=True,
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 520 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 521 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
| 522 |
+
headers=OPEN_ENDED_COLS,
|
| 523 |
+
datatype=TYPES,
|
| 524 |
+
visible=False,
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
search_bar.submit(
|
| 529 |
+
update_table,
|
| 530 |
+
[
|
| 531 |
+
hidden_leaderboard_table_for_search,
|
| 532 |
+
shown_columns,
|
| 533 |
+
search_bar,
|
| 534 |
+
filter_columns_type,
|
| 535 |
+
filter_domain_specific,
|
| 536 |
+
filter_columns_size
|
| 537 |
+
# filter_columns_architecture
|
| 538 |
+
],
|
| 539 |
+
leaderboard_table,
|
| 540 |
+
)
|
| 541 |
+
for selector in [
|
| 542 |
+
shown_columns,
|
| 543 |
+
filter_columns_type,
|
| 544 |
+
filter_domain_specific,
|
| 545 |
+
# filter_columns_architecture,
|
| 546 |
+
filter_columns_size,
|
| 547 |
+
# deleted_models_visibility,
|
| 548 |
+
]:
|
| 549 |
+
selector.change(
|
| 550 |
+
update_table,
|
| 551 |
+
[
|
| 552 |
+
hidden_leaderboard_table_for_search,
|
| 553 |
+
shown_columns,
|
| 554 |
+
search_bar,
|
| 555 |
+
filter_columns_type,
|
| 556 |
+
filter_domain_specific,
|
| 557 |
+
filter_columns_size
|
| 558 |
+
# filter_columns_architecture,
|
| 559 |
+
],
|
| 560 |
+
leaderboard_table,
|
| 561 |
+
queue=True,
|
| 562 |
+
)
|
| 563 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
| 564 |
+
with gr.Accordion("Response generation", open=False):
|
| 565 |
+
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="response_generation")
|
| 566 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
| 567 |
+
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
| 568 |
+
|
| 569 |
+
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
| 570 |
+
with gr.Row():
|
| 571 |
+
with gr.Column():
|
| 572 |
+
|
| 573 |
+
with gr.Row():
|
| 574 |
+
search_bar = gr.Textbox(
|
| 575 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 576 |
+
show_label=False,
|
| 577 |
+
elem_id="search-bar",
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
with gr.Row():
|
| 582 |
+
shown_columns = gr.CheckboxGroup(
|
| 583 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)],
|
| 584 |
+
value=[
|
| 585 |
+
c.name
|
| 586 |
+
for c in fields(AutoEvalColumn)
|
| 587 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
|
| 588 |
+
],
|
| 589 |
+
label="Select columns to show",
|
| 590 |
+
elem_id="column-select",
|
| 591 |
+
interactive=True,
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
# with gr.Row():
|
| 596 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 597 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 598 |
+
# )
|
| 599 |
+
with gr.Column(min_width=320):
|
| 600 |
+
|
| 601 |
+
# with gr.Box(elem_id="box-filter"):
|
| 602 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 603 |
+
label="Model Types",
|
| 604 |
+
choices=[t.to_str() for t in ModelType],
|
| 605 |
+
value=[t.to_str() for t in ModelType],
|
| 606 |
+
interactive=True,
|
| 607 |
+
elem_id="filter-columns-type",
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
| 611 |
+
# label="Architecture Types",
|
| 612 |
+
# choices=[i.value.name for i in ModelArch],
|
| 613 |
+
# value=[i.value.name for i in ModelArch],
|
| 614 |
+
# interactive=True,
|
| 615 |
+
# elem_id="filter-columns-architecture",
|
| 616 |
+
# )
|
| 617 |
+
|
| 618 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 619 |
+
label="Domain Specificity",
|
| 620 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 621 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 622 |
+
interactive=True,
|
| 623 |
+
elem_id="filter-columns-type",
|
| 624 |
+
)
|
| 625 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 626 |
+
label="Model sizes (in billions of parameters)",
|
| 627 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 628 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 629 |
+
interactive=True,
|
| 630 |
+
elem_id="filter-columns-size",
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")
|
| 634 |
+
|
| 635 |
+
leaderboard_table = gr.components.Dataframe(
|
| 636 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 637 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 638 |
+
datatype=TYPES,
|
| 639 |
+
elem_id="leaderboard-table",
|
| 640 |
+
interactive=False,
|
| 641 |
+
visible=True,
|
| 642 |
+
)
|
| 643 |
+
|
| 644 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 645 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 646 |
+
value=datasets_original_df[MED_SAFETY_COLS],
|
| 647 |
+
headers=MED_SAFETY_COLS,
|
| 648 |
+
datatype=TYPES,
|
| 649 |
+
visible=False,
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
search_bar.submit(
|
| 654 |
+
update_table,
|
| 655 |
+
[
|
| 656 |
+
hidden_leaderboard_table_for_search,
|
| 657 |
+
shown_columns,
|
| 658 |
+
search_bar,
|
| 659 |
+
filter_columns_type,
|
| 660 |
+
filter_domain_specific,
|
| 661 |
+
filter_columns_size
|
| 662 |
+
# filter_columns_architecture
|
| 663 |
+
],
|
| 664 |
+
leaderboard_table,
|
| 665 |
+
)
|
| 666 |
+
for selector in [
|
| 667 |
+
shown_columns,
|
| 668 |
+
filter_columns_type,
|
| 669 |
+
filter_domain_specific,
|
| 670 |
+
filter_columns_size,
|
| 671 |
+
# deleted_models_visibility,
|
| 672 |
+
]:
|
| 673 |
+
selector.change(
|
| 674 |
+
update_table,
|
| 675 |
+
[
|
| 676 |
+
hidden_leaderboard_table_for_search,
|
| 677 |
+
shown_columns,
|
| 678 |
+
search_bar,
|
| 679 |
+
filter_columns_type,
|
| 680 |
+
filter_domain_specific,
|
| 681 |
+
filter_columns_size
|
| 682 |
+
],
|
| 683 |
+
leaderboard_table,
|
| 684 |
+
queue=True,
|
| 685 |
+
)
|
| 686 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
| 687 |
+
with gr.Accordion("Response generation", open=False):
|
| 688 |
+
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="response_generation")
|
| 689 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
| 690 |
+
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
| 691 |
+
with gr.TabItem("🏅 Medical Summarization", elem_id="llm-benchmark-tab-table", id=3):
|
| 692 |
+
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
| 693 |
+
with gr.Row():
|
| 694 |
+
with gr.Column():
|
| 695 |
+
with gr.Row():
|
| 696 |
+
search_bar = gr.Textbox(
|
| 697 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 698 |
+
show_label=False,
|
| 699 |
+
elem_id="search-bar",
|
| 700 |
+
)
|
| 701 |
+
with gr.Row():
|
| 702 |
+
shown_columns = gr.CheckboxGroup(
|
| 703 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)],
|
| 704 |
+
value=[
|
| 705 |
+
c.name
|
| 706 |
+
for c in fields(AutoEvalColumn)
|
| 707 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
|
| 708 |
+
],
|
| 709 |
+
label="Select columns to show",
|
| 710 |
+
elem_id="column-select",
|
| 711 |
+
interactive=True,
|
| 712 |
+
)
|
| 713 |
+
# with gr.Row():
|
| 714 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 715 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 716 |
+
# )
|
| 717 |
+
with gr.Column(min_width=320):
|
| 718 |
+
# with gr.Box(elem_id="box-filter"):
|
| 719 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 720 |
+
label="Model Types",
|
| 721 |
+
choices=[t.to_str() for t in ModelType],
|
| 722 |
+
value=[t.to_str() for t in ModelType],
|
| 723 |
+
interactive=True,
|
| 724 |
+
elem_id="filter-columns-type",
|
| 725 |
+
)
|
| 726 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
| 727 |
+
# label="Architecture Types",
|
| 728 |
+
# choices=[i.value.name for i in ModelArch],
|
| 729 |
+
# value=[i.value.name for i in ModelArch],
|
| 730 |
+
# interactive=True,
|
| 731 |
+
# elem_id="filter-columns-architecture",
|
| 732 |
+
# )
|
| 733 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 734 |
+
label="Domain Specificity",
|
| 735 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 736 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 737 |
+
interactive=True,
|
| 738 |
+
elem_id="filter-columns-type",
|
| 739 |
+
)
|
| 740 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 741 |
+
label="Model sizes (in billions of parameters)",
|
| 742 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 743 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 744 |
+
interactive=True,
|
| 745 |
+
elem_id="filter-columns-size",
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")
|
| 749 |
+
|
| 750 |
+
leaderboard_table = gr.components.Dataframe(
|
| 751 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 752 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 753 |
+
datatype=TYPES,
|
| 754 |
+
elem_id="leaderboard-table",
|
| 755 |
+
interactive=False,
|
| 756 |
+
visible=True,
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 760 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 761 |
+
value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
|
| 762 |
+
headers=MEDICAL_SUMMARIZATION_COLS,
|
| 763 |
+
datatype=TYPES,
|
| 764 |
+
visible=False,
|
| 765 |
+
)
|
| 766 |
+
|
| 767 |
+
|
| 768 |
+
search_bar.submit(
|
| 769 |
+
update_table,
|
| 770 |
+
[
|
| 771 |
+
hidden_leaderboard_table_for_search,
|
| 772 |
+
shown_columns,
|
| 773 |
+
search_bar,
|
| 774 |
+
filter_columns_type,
|
| 775 |
+
filter_domain_specific,
|
| 776 |
+
filter_columns_size
|
| 777 |
+
# filter_columns_architecture
|
| 778 |
+
],
|
| 779 |
+
leaderboard_table,
|
| 780 |
+
)
|
| 781 |
+
for selector in [
|
| 782 |
+
shown_columns,
|
| 783 |
+
filter_columns_type,
|
| 784 |
+
filter_domain_specific,
|
| 785 |
+
filter_columns_size,
|
| 786 |
+
# deleted_models_visibility,
|
| 787 |
+
]:
|
| 788 |
+
selector.change(
|
| 789 |
+
update_table,
|
| 790 |
+
[
|
| 791 |
+
hidden_leaderboard_table_for_search,
|
| 792 |
+
shown_columns,
|
| 793 |
+
search_bar,
|
| 794 |
+
filter_columns_type,
|
| 795 |
+
filter_domain_specific,
|
| 796 |
+
filter_columns_size
|
| 797 |
+
],
|
| 798 |
+
leaderboard_table,
|
| 799 |
+
queue=True,
|
| 800 |
+
)
|
| 801 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
| 802 |
+
with gr.Accordion("Response generation", open=False):
|
| 803 |
+
system_prompt, user_prompt = render_generation_templates(task="medical_summarization", generation_type="response_generation")
|
| 804 |
+
with gr.Accordion("Question generation", open=False):
|
| 805 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
| 806 |
+
with gr.Accordion("Cross Examination", open=False):
|
| 807 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
| 808 |
+
with gr.TabItem("🏅 Note generation", elem_id="llm-benchmark-tab-table", id=4):
|
| 809 |
+
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
| 810 |
+
with gr.Tabs(elem_classes="tab-buttons2") as tabs:
|
| 811 |
+
with gr.TabItem("ACI Bench", elem_id="llm-benchmark-tab-table2", id=0):
|
| 812 |
+
with gr.Row():
|
| 813 |
+
with gr.Column():
|
| 814 |
+
with gr.Row():
|
| 815 |
+
search_bar = gr.Textbox(
|
| 816 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 817 |
+
show_label=False,
|
| 818 |
+
elem_id="search-bar",
|
| 819 |
+
)
|
| 820 |
+
with gr.Row():
|
| 821 |
+
shown_columns = gr.CheckboxGroup(
|
| 822 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)],
|
| 823 |
+
value=[
|
| 824 |
+
c.name
|
| 825 |
+
for c in fields(AutoEvalColumn)
|
| 826 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
|
| 827 |
+
],
|
| 828 |
+
label="Select columns to show",
|
| 829 |
+
elem_id="column-select",
|
| 830 |
+
interactive=True,
|
| 831 |
+
)
|
| 832 |
+
# with gr.Row():
|
| 833 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 834 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 835 |
+
# )
|
| 836 |
+
with gr.Column(min_width=320):
|
| 837 |
+
# with gr.Box(elem_id="box-filter"):
|
| 838 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 839 |
+
label="Model Types",
|
| 840 |
+
choices=[t.to_str() for t in ModelType],
|
| 841 |
+
value=[t.to_str() for t in ModelType],
|
| 842 |
+
interactive=True,
|
| 843 |
+
elem_id="filter-columns-type",
|
| 844 |
+
)
|
| 845 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
| 846 |
+
# label="Architecture Types",
|
| 847 |
+
# choices=[i.value.name for i in ModelArch],
|
| 848 |
+
# value=[i.value.name for i in ModelArch],
|
| 849 |
+
# interactive=True,
|
| 850 |
+
# elem_id="filter-columns-architecture",
|
| 851 |
+
# )
|
| 852 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 853 |
+
label="Domain Specificity",
|
| 854 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 855 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 856 |
+
interactive=True,
|
| 857 |
+
elem_id="filter-columns-type",
|
| 858 |
+
)
|
| 859 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 860 |
+
label="Model sizes (in billions of parameters)",
|
| 861 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 862 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 863 |
+
interactive=True,
|
| 864 |
+
elem_id="filter-columns-size",
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")
|
| 868 |
+
|
| 869 |
+
leaderboard_table = gr.components.Dataframe(
|
| 870 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 871 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 872 |
+
datatype=TYPES,
|
| 873 |
+
elem_id="leaderboard-table",
|
| 874 |
+
interactive=False,
|
| 875 |
+
visible=True,
|
| 876 |
+
)
|
| 877 |
+
|
| 878 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 879 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 880 |
+
value=datasets_original_df[ACI_COLS],
|
| 881 |
+
headers=ACI_COLS,
|
| 882 |
+
datatype=TYPES,
|
| 883 |
+
visible=False,
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
|
| 887 |
+
search_bar.submit(
|
| 888 |
+
update_table,
|
| 889 |
+
[
|
| 890 |
+
hidden_leaderboard_table_for_search,
|
| 891 |
+
shown_columns,
|
| 892 |
+
search_bar,
|
| 893 |
+
filter_columns_type,
|
| 894 |
+
filter_domain_specific,
|
| 895 |
+
filter_columns_size
|
| 896 |
+
# filter_columns_architecture
|
| 897 |
+
],
|
| 898 |
+
leaderboard_table,
|
| 899 |
+
)
|
| 900 |
+
for selector in [
|
| 901 |
+
shown_columns,
|
| 902 |
+
filter_columns_type,
|
| 903 |
+
filter_domain_specific,
|
| 904 |
+
filter_columns_size,
|
| 905 |
+
# deleted_models_visibility,
|
| 906 |
+
]:
|
| 907 |
+
selector.change(
|
| 908 |
+
update_table,
|
| 909 |
+
[
|
| 910 |
+
hidden_leaderboard_table_for_search,
|
| 911 |
+
shown_columns,
|
| 912 |
+
search_bar,
|
| 913 |
+
filter_columns_type,
|
| 914 |
+
filter_domain_specific,
|
| 915 |
+
filter_columns_size
|
| 916 |
+
],
|
| 917 |
+
leaderboard_table,
|
| 918 |
+
queue=True,
|
| 919 |
+
)
|
| 920 |
+
with gr.TabItem("SOAP Notes", elem_id="llm-benchmark-tab-table2", id=1):
|
| 921 |
+
with gr.Row():
|
| 922 |
+
with gr.Column():
|
| 923 |
+
with gr.Row():
|
| 924 |
+
search_bar = gr.Textbox(
|
| 925 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 926 |
+
show_label=False,
|
| 927 |
+
elem_id="search-bar",
|
| 928 |
+
)
|
| 929 |
+
with gr.Row():
|
| 930 |
+
shown_columns = gr.CheckboxGroup(
|
| 931 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)],
|
| 932 |
+
value=[
|
| 933 |
+
c.name
|
| 934 |
+
for c in fields(AutoEvalColumn)
|
| 935 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
|
| 936 |
+
],
|
| 937 |
+
label="Select columns to show",
|
| 938 |
+
elem_id="column-select",
|
| 939 |
+
interactive=True,
|
| 940 |
+
)
|
| 941 |
+
# with gr.Row():
|
| 942 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 943 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 944 |
+
# )
|
| 945 |
+
with gr.Column(min_width=320):
|
| 946 |
+
# with gr.Box(elem_id="box-filter"):
|
| 947 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 948 |
+
label="Model Types",
|
| 949 |
+
choices=[t.to_str() for t in ModelType],
|
| 950 |
+
value=[t.to_str() for t in ModelType],
|
| 951 |
+
interactive=True,
|
| 952 |
+
elem_id="filter-columns-type",
|
| 953 |
+
)
|
| 954 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
| 955 |
+
# label="Architecture Types",
|
| 956 |
+
# choices=[i.value.name for i in ModelArch],
|
| 957 |
+
# value=[i.value.name for i in ModelArch],
|
| 958 |
+
# interactive=True,
|
| 959 |
+
# elem_id="filter-columns-architecture",
|
| 960 |
+
# )
|
| 961 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 962 |
+
label="Domain Specificity",
|
| 963 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 964 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 965 |
+
interactive=True,
|
| 966 |
+
elem_id="filter-columns-type",
|
| 967 |
+
)
|
| 968 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 969 |
+
label="Model sizes (in billions of parameters)",
|
| 970 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 971 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 972 |
+
interactive=True,
|
| 973 |
+
elem_id="filter-columns-size",
|
| 974 |
+
)
|
| 975 |
+
|
| 976 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")
|
| 977 |
+
|
| 978 |
+
leaderboard_table = gr.components.Dataframe(
|
| 979 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 980 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 981 |
+
datatype=TYPES,
|
| 982 |
+
elem_id="leaderboard-table",
|
| 983 |
+
interactive=False,
|
| 984 |
+
visible=True,
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 988 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 989 |
+
value=datasets_original_df[SOAP_COLS],
|
| 990 |
+
headers=SOAP_COLS,
|
| 991 |
+
datatype=TYPES,
|
| 992 |
+
visible=False,
|
| 993 |
+
)
|
| 994 |
+
|
| 995 |
+
|
| 996 |
+
search_bar.submit(
|
| 997 |
+
update_table,
|
| 998 |
+
[
|
| 999 |
+
hidden_leaderboard_table_for_search,
|
| 1000 |
+
shown_columns,
|
| 1001 |
+
search_bar,
|
| 1002 |
+
filter_columns_type,
|
| 1003 |
+
filter_domain_specific,
|
| 1004 |
+
filter_columns_size
|
| 1005 |
+
# filter_columns_architecture
|
| 1006 |
+
],
|
| 1007 |
+
leaderboard_table,
|
| 1008 |
+
)
|
| 1009 |
+
for selector in [
|
| 1010 |
+
shown_columns,
|
| 1011 |
+
filter_columns_type,
|
| 1012 |
+
filter_domain_specific,
|
| 1013 |
+
filter_columns_size,
|
| 1014 |
+
# deleted_models_visibility,
|
| 1015 |
+
]:
|
| 1016 |
+
selector.change(
|
| 1017 |
+
update_table,
|
| 1018 |
+
[
|
| 1019 |
+
hidden_leaderboard_table_for_search,
|
| 1020 |
+
shown_columns,
|
| 1021 |
+
search_bar,
|
| 1022 |
+
filter_columns_type,
|
| 1023 |
+
filter_domain_specific,
|
| 1024 |
+
filter_columns_size
|
| 1025 |
+
],
|
| 1026 |
+
leaderboard_table,
|
| 1027 |
+
queue=True,
|
| 1028 |
+
)
|
| 1029 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
| 1030 |
+
with gr.Accordion("ACI-Bench Response generation", open=False):
|
| 1031 |
+
system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
|
| 1032 |
+
with gr.Accordion("SOAP Notes Response generation", open=False):
|
| 1033 |
+
system_prompt, user_prompt = render_generation_templates(task="soap", generation_type="response_generation")
|
| 1034 |
+
with gr.Accordion("Question generation", open=False):
|
| 1035 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
| 1036 |
+
with gr.Accordion("Cross Examination", open=False):
|
| 1037 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
| 1038 |
+
with gr.TabItem("🏅 Closed Ended Evaluation", elem_id="llm-benchmark-tab-table", id=6):
|
| 1039 |
+
with gr.Tabs(elem_classes="tab-buttons2") as tabs:
|
| 1040 |
+
with gr.TabItem("English", elem_id="llm-benchmark-tab-table9", id=0):
|
| 1041 |
+
with gr.Row():
|
| 1042 |
+
with gr.Column():
|
| 1043 |
+
with gr.Row():
|
| 1044 |
+
search_bar = gr.Textbox(
|
| 1045 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 1046 |
+
show_label=False,
|
| 1047 |
+
elem_id="search-bar",
|
| 1048 |
+
)
|
| 1049 |
+
with gr.Row():
|
| 1050 |
+
shown_columns = gr.CheckboxGroup(
|
| 1051 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
| 1052 |
+
value=[
|
| 1053 |
+
c.name
|
| 1054 |
+
for c in fields(AutoEvalColumn)
|
| 1055 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
| 1056 |
+
],
|
| 1057 |
+
label="Select columns to show",
|
| 1058 |
+
elem_id="column-select",
|
| 1059 |
+
interactive=True,
|
| 1060 |
+
)
|
| 1061 |
+
# with gr.Row():
|
| 1062 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 1063 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 1064 |
+
# )
|
| 1065 |
+
with gr.Column(min_width=320):
|
| 1066 |
+
# with gr.Box(elem_id="box-filter"):
|
| 1067 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 1068 |
+
label="Model Types",
|
| 1069 |
+
choices=[t.to_str() for t in ModelType],
|
| 1070 |
+
value=[t.to_str() for t in ModelType],
|
| 1071 |
+
interactive=True,
|
| 1072 |
+
elem_id="filter-columns-type",
|
| 1073 |
+
)
|
| 1074 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
| 1075 |
+
# label="Architecture Types",
|
| 1076 |
+
# choices=[i.value.name for i in ModelArch],
|
| 1077 |
+
# value=[i.value.name for i in ModelArch],
|
| 1078 |
+
# interactive=True,
|
| 1079 |
+
# elem_id="filter-columns-architecture",
|
| 1080 |
+
# )
|
| 1081 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 1082 |
+
label="Domain Specificity",
|
| 1083 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 1084 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 1085 |
+
interactive=True,
|
| 1086 |
+
elem_id="filter-columns-type",
|
| 1087 |
+
)
|
| 1088 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 1089 |
+
label="Model sizes (in billions of parameters)",
|
| 1090 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 1091 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 1092 |
+
interactive=True,
|
| 1093 |
+
elem_id="filter-columns-size",
|
| 1094 |
+
)
|
| 1095 |
+
|
| 1096 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
| 1097 |
+
leaderboard_table = gr.components.Dataframe(
|
| 1098 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 1099 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 1100 |
+
datatype=TYPES,
|
| 1101 |
+
elem_id="leaderboard-table",
|
| 1102 |
+
interactive=False,
|
| 1103 |
+
visible=True,
|
| 1104 |
+
)
|
| 1105 |
+
|
| 1106 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 1107 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 1108 |
+
value=datasets_original_df[DATASET_COLS],
|
| 1109 |
+
headers=DATASET_COLS,
|
| 1110 |
+
datatype=TYPES,
|
| 1111 |
+
visible=False,
|
| 1112 |
+
)
|
| 1113 |
+
|
| 1114 |
+
search_bar.submit(
|
| 1115 |
+
update_table,
|
| 1116 |
+
[
|
| 1117 |
+
hidden_leaderboard_table_for_search,
|
| 1118 |
+
shown_columns,
|
| 1119 |
+
search_bar,
|
| 1120 |
+
filter_columns_type,
|
| 1121 |
+
filter_domain_specific,
|
| 1122 |
+
filter_columns_size
|
| 1123 |
+
# filter_columns_architecture
|
| 1124 |
+
],
|
| 1125 |
+
leaderboard_table,
|
| 1126 |
+
)
|
| 1127 |
+
for selector in [
|
| 1128 |
+
shown_columns,
|
| 1129 |
+
filter_columns_type,
|
| 1130 |
+
filter_domain_specific,
|
| 1131 |
+
# filter_columns_architecture,
|
| 1132 |
+
filter_columns_size,
|
| 1133 |
+
# deleted_models_visibility,
|
| 1134 |
+
]:
|
| 1135 |
+
selector.change(
|
| 1136 |
+
update_table,
|
| 1137 |
+
[
|
| 1138 |
+
hidden_leaderboard_table_for_search,
|
| 1139 |
+
shown_columns,
|
| 1140 |
+
search_bar,
|
| 1141 |
+
filter_columns_type,
|
| 1142 |
+
filter_domain_specific,
|
| 1143 |
+
filter_columns_size
|
| 1144 |
+
# filter_columns_architecture,
|
| 1145 |
+
],
|
| 1146 |
+
leaderboard_table,
|
| 1147 |
+
queue=True,
|
| 1148 |
+
)
|
| 1149 |
+
|
| 1150 |
+
with gr.TabItem("🌍 Multilingual", elem_id="llm-benchmark-tab-table9", id=1):
|
| 1151 |
+
with gr.Row():
|
| 1152 |
+
with gr.Column():
|
| 1153 |
+
with gr.Row():
|
| 1154 |
+
search_bar = gr.Textbox(
|
| 1155 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 1156 |
+
show_label=False,
|
| 1157 |
+
elem_id="search-bar",
|
| 1158 |
+
)
|
| 1159 |
+
with gr.Row():
|
| 1160 |
+
shown_columns = gr.CheckboxGroup(
|
| 1161 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
|
| 1162 |
+
value=[
|
| 1163 |
+
c.name
|
| 1164 |
+
for c in fields(AutoEvalColumn)
|
| 1165 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)
|
| 1166 |
+
],
|
| 1167 |
+
label="Select columns to show",
|
| 1168 |
+
elem_id="column-select",
|
| 1169 |
+
interactive=True,
|
| 1170 |
+
)
|
| 1171 |
+
# with gr.Row():
|
| 1172 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 1173 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 1174 |
+
# )
|
| 1175 |
+
with gr.Column(min_width=320):
|
| 1176 |
+
# with gr.Box(elem_id="box-filter"):
|
| 1177 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 1178 |
+
label="Model Types",
|
| 1179 |
+
choices=[t.to_str() for t in ModelType],
|
| 1180 |
+
value=[t.to_str() for t in ModelType],
|
| 1181 |
+
interactive=True,
|
| 1182 |
+
elem_id="filter-columns-type",
|
| 1183 |
+
)
|
| 1184 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
| 1185 |
+
# label="Architecture Types",
|
| 1186 |
+
# choices=[i.value.name for i in ModelArch],
|
| 1187 |
+
# value=[i.value.name for i in ModelArch],
|
| 1188 |
+
# interactive=True,
|
| 1189 |
+
# elem_id="filter-columns-architecture",
|
| 1190 |
+
# )
|
| 1191 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 1192 |
+
label="Domain Specificity",
|
| 1193 |
+
choices=["🏥 Clinical models", "Generic models"],
|
| 1194 |
+
value=["🏥 Clinical models", "Generic models"],
|
| 1195 |
+
interactive=True,
|
| 1196 |
+
elem_id="filter-columns-type",
|
| 1197 |
+
)
|
| 1198 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 1199 |
+
label="Model sizes (in billions of parameters)",
|
| 1200 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 1201 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 1202 |
+
interactive=True,
|
| 1203 |
+
elem_id="filter-columns-size",
|
| 1204 |
+
)
|
| 1205 |
+
|
| 1206 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="closed_ended_multilingual")
|
| 1207 |
+
leaderboard_table = gr.components.Dataframe(
|
| 1208 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 1209 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 1210 |
+
datatype=TYPES,
|
| 1211 |
+
elem_id="leaderboard-table",
|
| 1212 |
+
interactive=False,
|
| 1213 |
+
visible=True,
|
| 1214 |
+
)
|
| 1215 |
+
|
| 1216 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 1217 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 1218 |
+
value=datasets_original_df[ClosedEndedMultilingual_COLS],
|
| 1219 |
+
headers=ClosedEndedMultilingual_COLS,
|
| 1220 |
+
datatype=TYPES,
|
| 1221 |
+
visible=False,
|
| 1222 |
+
)
|
| 1223 |
+
|
| 1224 |
+
search_bar.submit(
|
| 1225 |
+
update_table,
|
| 1226 |
+
[
|
| 1227 |
+
hidden_leaderboard_table_for_search,
|
| 1228 |
+
shown_columns,
|
| 1229 |
+
search_bar,
|
| 1230 |
+
filter_columns_type,
|
| 1231 |
+
filter_domain_specific,
|
| 1232 |
+
filter_columns_size
|
| 1233 |
+
# filter_columns_architecture
|
| 1234 |
+
],
|
| 1235 |
+
leaderboard_table,
|
| 1236 |
+
)
|
| 1237 |
+
for selector in [
|
| 1238 |
+
shown_columns,
|
| 1239 |
+
filter_columns_type,
|
| 1240 |
+
filter_domain_specific,
|
| 1241 |
+
# filter_columns_architecture,
|
| 1242 |
+
filter_columns_size,
|
| 1243 |
+
# deleted_models_visibility,
|
| 1244 |
+
]:
|
| 1245 |
+
selector.change(
|
| 1246 |
+
update_table,
|
| 1247 |
+
[
|
| 1248 |
+
hidden_leaderboard_table_for_search,
|
| 1249 |
+
shown_columns,
|
| 1250 |
+
search_bar,
|
| 1251 |
+
filter_columns_type,
|
| 1252 |
+
filter_domain_specific,
|
| 1253 |
+
filter_columns_size
|
| 1254 |
+
# filter_columns_architecture,
|
| 1255 |
+
],
|
| 1256 |
+
leaderboard_table,
|
| 1257 |
+
queue=True,
|
| 1258 |
+
)
|
| 1259 |
+
|
| 1260 |
+
|
| 1261 |
+
with gr.Row():
|
| 1262 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 1263 |
+
citation_button = gr.Textbox(
|
| 1264 |
+
value=CITATION_BUTTON_TEXT,
|
| 1265 |
+
label=CITATION_BUTTON_LABEL,
|
| 1266 |
+
lines=20,
|
| 1267 |
+
elem_id="citation-button",
|
| 1268 |
+
show_copy_button=True,
|
| 1269 |
+
)
|
| 1270 |
+
|
| 1271 |
+
|
| 1272 |
+
|
| 1273 |
+
scheduler = BackgroundScheduler()
|
| 1274 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 1275 |
+
scheduler.start()
|
| 1276 |
+
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|
src/about.py
CHANGED
|
@@ -40,6 +40,77 @@ class OpenEndedColumns(Enum):
|
|
| 40 |
column3 = OpenEndedColumn("Score_intervals", "score", "Score 95% CI")
|
| 41 |
# changes to be made here
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
@dataclass
|
| 44 |
class MedSafetyColumn:
|
| 45 |
benchmark: str
|
|
@@ -102,11 +173,16 @@ class ClosedEndedArabicColumn:
|
|
| 102 |
metric: str
|
| 103 |
col_name: str
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
|
| 112 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
|
| 40 |
column3 = OpenEndedColumn("Score_intervals", "score", "Score 95% CI")
|
| 41 |
# changes to be made here
|
| 42 |
|
| 43 |
+
|
| 44 |
+
@dataclass
|
| 45 |
+
class OpenEndedMultilingualColumn:
|
| 46 |
+
benchmark: str
|
| 47 |
+
metric: str
|
| 48 |
+
col_name: str
|
| 49 |
+
|
| 50 |
+
class OpenEndedArabicColumn(Enum):
|
| 51 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 52 |
+
arabic_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
| 53 |
+
arabic_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
| 54 |
+
arabic_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
| 55 |
+
arabic_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class OpenEndedFrenchColumn(Enum):
|
| 59 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 60 |
+
french_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
| 61 |
+
french_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
| 62 |
+
french_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
| 63 |
+
french_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class OpenEndedSpanishColumn(Enum):
|
| 67 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 68 |
+
spanish_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
| 69 |
+
spanish_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
| 70 |
+
spanish_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
| 71 |
+
spanish_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class OpenEndedPortugueseColumn(Enum):
|
| 75 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 76 |
+
porto_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
| 77 |
+
porto_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
| 78 |
+
porto_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
| 79 |
+
porto_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class OpenEndedRomanianColumn(Enum):
|
| 83 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 84 |
+
rom_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
| 85 |
+
rom_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
| 86 |
+
rom_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
| 87 |
+
rom_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class OpenEndedGreekColumn(Enum):
|
| 91 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 92 |
+
greek_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
| 93 |
+
greek_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
| 94 |
+
greek_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
| 95 |
+
greek_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
@dataclass
|
| 100 |
+
class ClosedEndedMultilingualColumn:
|
| 101 |
+
benchmark: str
|
| 102 |
+
metric: str
|
| 103 |
+
col_name: str
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class ClosedEndedMultilingualColumns(Enum):
|
| 107 |
+
mtask0 = ClosedEndedMultilingualColumn("Global-MMLU-Arabic", "accuracy", "🇦🇪Arabic")
|
| 108 |
+
mtask1 = ClosedEndedMultilingualColumn("Global-MMLU-French", "accuracy", "🇫🇷French")
|
| 109 |
+
mtask2 = ClosedEndedMultilingualColumn("Global-MMLU-Spanish", "accuracy", "🇪🇸Spanish")
|
| 110 |
+
mtask3 = ClosedEndedMultilingualColumn("Global-MMLU-Portuguese", "accuracy", "🇵🇹Portuguese")
|
| 111 |
+
mtask4 = ClosedEndedMultilingualColumn("Global-MMLU-Romanian", "accuracy", "🇷🇴Romanian")
|
| 112 |
+
mtask5 = ClosedEndedMultilingualColumn("Global-MMLU-Greek", "accuracy", "🇬🇷Greek")
|
| 113 |
+
|
| 114 |
@dataclass
|
| 115 |
class MedSafetyColumn:
|
| 116 |
benchmark: str
|
|
|
|
| 173 |
metric: str
|
| 174 |
col_name: str
|
| 175 |
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
# class ClosedEndedArabicColumns(Enum):
|
| 182 |
+
# arabictask0 = ClosedEndedArabicColumn("MMLU-Arabic", "accuracy", "MMLU-Arabic")
|
| 183 |
+
# arabictask2 = ClosedEndedArabicColumn("MedMCQA-Arabic", "accuracy", "MedMCQA-Arabic")
|
| 184 |
+
# arabictask3 = ClosedEndedArabicColumn("MedQA-Arabic", "accuracy", "MedQA-Arabic")
|
| 185 |
+
# arabictask5 = ClosedEndedArabicColumn("PubMedQA-Arabic", "accuracy", "PubMedQA-Arabic")
|
| 186 |
|
| 187 |
|
| 188 |
NUM_FEWSHOT = 0 # Change with your few shot
|
src/display/utils.py
CHANGED
|
@@ -4,7 +4,7 @@ from enum import Enum
|
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
# changes to be made here
|
| 7 |
-
from src.about import HarnessTasks, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns,
|
| 8 |
from src.envs import PRIVATE_REPO
|
| 9 |
import json
|
| 10 |
import gradio as gr
|
|
@@ -31,17 +31,21 @@ class ColumnContent:
|
|
| 31 |
medical_summarization_col: bool = False
|
| 32 |
aci_col: bool = False
|
| 33 |
soap_col: bool = False
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
-
## Leaderboard columns
|
| 38 |
-
auto_eval_column_dict = []
|
| 39 |
# Init
|
| 40 |
auto_eval_column_dict = []
|
| 41 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 42 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 43 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
| 44 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True,
|
| 45 |
auto_eval_column_dict.append(["overall", ColumnContent, ColumnContent("Overall Score", "number", True, False, medical_summarization_col=True, aci_col=True, soap_col=True, invariant=False)])
|
| 46 |
for task in HarnessTasks:
|
| 47 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)])
|
|
@@ -59,9 +63,21 @@ for column in ACIColumns:
|
|
| 59 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, aci_col=True, invariant=False)])
|
| 60 |
for column in SOAPColumns:
|
| 61 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, soap_col=True, invariant=False)])
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
| 66 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
| 67 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
|
@@ -75,6 +91,13 @@ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Avai
|
|
| 75 |
# auto_eval_column_dict.append(["display_result", ColumnContent, ColumnContent("Display Result", "bool", False, True)])
|
| 76 |
auto_eval_column_dict.append(["date", ColumnContent, ColumnContent("Submission Date", "str", False)])
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 79 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 80 |
|
|
@@ -94,8 +117,8 @@ class EvalQueueColumn: # Queue column
|
|
| 94 |
med_safety_status = ColumnContent("med_safety_status", "str", True)
|
| 95 |
medical_summarization_status = ColumnContent("medical_summarization_status", "str", True)
|
| 96 |
note_generation_status = ColumnContent("note_generation_status", "str", True)
|
| 97 |
-
if PRIVATE_REPO:
|
| 98 |
-
|
| 99 |
|
| 100 |
## All the model information that we might need
|
| 101 |
@dataclass
|
|
@@ -221,8 +244,22 @@ MED_SAFETY_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c
|
|
| 221 |
MEDICAL_SUMMARIZATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.medical_summarization_col or c.invariant)]
|
| 222 |
ACI_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.aci_col or c.invariant)]
|
| 223 |
SOAP_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.soap_col or c.invariant)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
# if PRIVATE_REPO:
|
| 225 |
-
CLOSED_ENDED_ARABIC_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_arabic_col or c.invariant)]
|
| 226 |
# CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.cross_examination_col or c.invariant)]
|
| 227 |
# DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.cross_examination_col]
|
| 228 |
# OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col and not c.med_safety_col and not c.cross_examination_col]
|
|
@@ -243,8 +280,26 @@ MED_SAFETY_BENCHMARK_COLS = [t.value.col_name for t in MedSafetyColumns]
|
|
| 243 |
MEDICAL_SUMMARIZATION_BENCHMARK_COLS = [t.value.col_name for t in MedicalSummarizationColumns]
|
| 244 |
ACI_BENCHMARK_COLS = [t.value.col_name for t in ACIColumns]
|
| 245 |
SOAP_BENCHMARK_COLS = [t.value.col_name for t in SOAPColumns]
|
| 246 |
-
|
| 247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
# CROSS_EXAMINATION_BENCHMARK_COLS = [t.value.col_name for t in CrossExaminationTasks]
|
| 249 |
|
| 250 |
NUMERIC_INTERVALS = {
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
# changes to be made here
|
| 7 |
+
from src.about import HarnessTasks, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, ClosedEndedMultilingualColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn
|
| 8 |
from src.envs import PRIVATE_REPO
|
| 9 |
import json
|
| 10 |
import gradio as gr
|
|
|
|
| 31 |
medical_summarization_col: bool = False
|
| 32 |
aci_col: bool = False
|
| 33 |
soap_col: bool = False
|
| 34 |
+
open_ended_arabic_col: bool = False
|
| 35 |
+
open_ended_french_col: bool = False
|
| 36 |
+
open_ended_spanish_col: bool = False
|
| 37 |
+
open_ended_portuguese_col: bool = False
|
| 38 |
+
open_ended_romanian_col: bool = False
|
| 39 |
+
open_ended_greek_col: bool = False
|
| 40 |
+
closed_ended_multilingual_col: bool = False
|
| 41 |
|
| 42 |
|
|
|
|
|
|
|
| 43 |
# Init
|
| 44 |
auto_eval_column_dict = []
|
| 45 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 46 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 47 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
| 48 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True, closed_ended_multilingual_col=True, invariant=False)])
|
| 49 |
auto_eval_column_dict.append(["overall", ColumnContent, ColumnContent("Overall Score", "number", True, False, medical_summarization_col=True, aci_col=True, soap_col=True, invariant=False)])
|
| 50 |
for task in HarnessTasks:
|
| 51 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)])
|
|
|
|
| 63 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, aci_col=True, invariant=False)])
|
| 64 |
for column in SOAPColumns:
|
| 65 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, soap_col=True, invariant=False)])
|
| 66 |
+
for column in OpenEndedArabicColumn:
|
| 67 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_arabic_col=True, invariant=False)])
|
| 68 |
+
for column in OpenEndedFrenchColumn:
|
| 69 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_french_col=True, invariant=False)])
|
| 70 |
+
for column in OpenEndedSpanishColumn:
|
| 71 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_spanish_col=True, invariant=False)])
|
| 72 |
+
for column in OpenEndedPortugueseColumn:
|
| 73 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_portuguese_col=True, invariant=False)])
|
| 74 |
+
for column in OpenEndedRomanianColumn:
|
| 75 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_romanian_col=True, invariant=False)])
|
| 76 |
+
for column in OpenEndedGreekColumn:
|
| 77 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_greek_col=True, invariant=False)])
|
| 78 |
+
for column in ClosedEndedMultilingualColumns:
|
| 79 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, closed_ended_multilingual_col=True, invariant=False)])
|
| 80 |
+
|
| 81 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
| 82 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
| 83 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
|
|
|
| 91 |
# auto_eval_column_dict.append(["display_result", ColumnContent, ColumnContent("Display Result", "bool", False, True)])
|
| 92 |
auto_eval_column_dict.append(["date", ColumnContent, ColumnContent("Submission Date", "str", False)])
|
| 93 |
|
| 94 |
+
# from dataclasses import make_dataclass, field
|
| 95 |
+
|
| 96 |
+
# Example of fixing mutable defaults
|
| 97 |
+
# auto_eval_column_dict = {
|
| 98 |
+
# "example_field": field(default_factory=dict), # Replace mutable default
|
| 99 |
+
# "another_field": field(default_factory=list), # Replace mutable default
|
| 100 |
+
# }
|
| 101 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 102 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 103 |
|
|
|
|
| 117 |
med_safety_status = ColumnContent("med_safety_status", "str", True)
|
| 118 |
medical_summarization_status = ColumnContent("medical_summarization_status", "str", True)
|
| 119 |
note_generation_status = ColumnContent("note_generation_status", "str", True)
|
| 120 |
+
# if PRIVATE_REPO:
|
| 121 |
+
# closed_ended_arabic_status = ColumnContent("closed_ended_arabic_status", "str", True)
|
| 122 |
|
| 123 |
## All the model information that we might need
|
| 124 |
@dataclass
|
|
|
|
| 244 |
MEDICAL_SUMMARIZATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.medical_summarization_col or c.invariant)]
|
| 245 |
ACI_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.aci_col or c.invariant)]
|
| 246 |
SOAP_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.soap_col or c.invariant)]
|
| 247 |
+
|
| 248 |
+
OpenEndedArabic_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_arabic_col or c.invariant)]
|
| 249 |
+
OpenEndedFrench_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_french_col or c.invariant)]
|
| 250 |
+
OpenEndedSpanish_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_spanish_col or c.invariant)]
|
| 251 |
+
OpenEndedPortuguese_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_portuguese_col or c.invariant)]
|
| 252 |
+
OpenEndedRomanian_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_romanian_col or c.invariant)]
|
| 253 |
+
OpenEndedGreek_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_greek_col or c.invariant)]
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
ClosedEndedMultilingual_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_multilingual_col or c.invariant)]
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
# if PRIVATE_REPO:
|
| 262 |
+
#CLOSED_ENDED_ARABIC_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_arabic_col or c.invariant)]
|
| 263 |
# CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.cross_examination_col or c.invariant)]
|
| 264 |
# DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.cross_examination_col]
|
| 265 |
# OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col and not c.med_safety_col and not c.cross_examination_col]
|
|
|
|
| 280 |
MEDICAL_SUMMARIZATION_BENCHMARK_COLS = [t.value.col_name for t in MedicalSummarizationColumns]
|
| 281 |
ACI_BENCHMARK_COLS = [t.value.col_name for t in ACIColumns]
|
| 282 |
SOAP_BENCHMARK_COLS = [t.value.col_name for t in SOAPColumns]
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
#changed this
|
| 286 |
+
OpenEndedArabic_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedArabicColumn]
|
| 287 |
+
OpenEndedFrench_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedFrenchColumn]
|
| 288 |
+
OpenEndedPortuguese_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedPortugueseColumn]
|
| 289 |
+
OpenEndedSpanish_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedSpanishColumn]
|
| 290 |
+
OpenEndedRomanian_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedRomanianColumn]
|
| 291 |
+
OpenEndedGreek_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedGreekColumn]
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
ClosedEndedMultilingual_BENCHMARK_COLS = [t.value.col_name for t in ClosedEndedMultilingualColumns]
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
# # if PRIVATE_REPO:
|
| 302 |
+
# CLOSED_ENDED_ARABIC_BENCHMARK_COLS = [t.value.col_name for t in ClosedEndedArabicColumns]
|
| 303 |
# CROSS_EXAMINATION_BENCHMARK_COLS = [t.value.col_name for t in CrossExaminationTasks]
|
| 304 |
|
| 305 |
NUMERIC_INTERVALS = {
|
src/leaderboard/instr.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
in about
|
| 2 |
+
from app, to read evals, to utils to about ( to define the tasks and the colums ( so for close-ended define the languages and for open-ended ( use the same code with 95%CI, Elo rating...)))
|
| 3 |
+
define a class for open-ended-multilingual ( 6 times for all) the and close-ended mulitlingual globalmmlu
|
| 4 |
+
6 columns for open-ended and one different for multili
|
| 5 |
+
|
| 6 |
+
in utils:
|
| 7 |
+
|
| 8 |
+
i should define the columns for languages again ( here we dont care about the hidden parts but we need to define in the beginning )
|
| 9 |
+
|
| 10 |
+
in read_evals
|
| 11 |
+
|
| 12 |
+
definition of the results of the data frames, and the definition of the int
|
| 13 |
+
|
| 14 |
+
for the front end:
|
| 15 |
+
|
| 16 |
+
in the app.py,i should add the gr.tabitem for open-ended, follow the healthbench and add the languages same logic as "ALL"
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -9,7 +9,7 @@ import numpy as np
|
|
| 9 |
|
| 10 |
from src.display.formatting import make_clickable_model
|
| 11 |
# changes to be made here
|
| 12 |
-
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns,
|
| 13 |
from src.submission.check_validity import is_model_on_hub
|
| 14 |
from src.envs import PRIVATE_REPO
|
| 15 |
|
|
@@ -30,7 +30,13 @@ class EvalResult:
|
|
| 30 |
medical_summarization_results: dict
|
| 31 |
aci_results: dict
|
| 32 |
soap_results: dict
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
is_domain_specific: bool
|
| 35 |
use_chat_template: bool
|
| 36 |
# clinical_type_results:dict
|
|
@@ -108,7 +114,7 @@ class EvalResult:
|
|
| 108 |
open_ended_results = {}
|
| 109 |
if "open-ended" in data["results"]:
|
| 110 |
for task in OpenEndedColumns:
|
| 111 |
-
task = task.value
|
| 112 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 113 |
accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None
|
| 114 |
open_ended_results[task.benchmark] = accs
|
|
@@ -167,20 +173,90 @@ class EvalResult:
|
|
| 167 |
continue
|
| 168 |
mean_acc = np.mean(accs) # * 100.0
|
| 169 |
soap_results[task.benchmark] = mean_acc
|
| 170 |
-
|
| 171 |
-
if
|
| 172 |
-
for task in
|
| 173 |
task = task.value
|
| 174 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
# if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
|
| 185 |
# open_ended_results = {}
|
| 186 |
# med_safety_results = {}
|
|
@@ -212,7 +288,13 @@ class EvalResult:
|
|
| 212 |
medical_summarization_results=medical_summarization_results,
|
| 213 |
aci_results=aci_results,
|
| 214 |
soap_results=soap_results,
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
| 217 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
| 218 |
precision=precision,
|
|
@@ -315,12 +397,42 @@ class EvalResult:
|
|
| 315 |
for task in SOAPColumns:
|
| 316 |
data_dict[task.value.col_name] = self.soap_results[task.value.benchmark]
|
| 317 |
return data_dict
|
| 318 |
-
if
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
data_dict[AutoEvalColumn.average.name] = average
|
| 321 |
-
if len(self.
|
| 322 |
-
for task in
|
| 323 |
-
data_dict[task.value.col_name] = self.
|
| 324 |
return data_dict
|
| 325 |
|
| 326 |
def get_request_file_for_model(requests_path, model_name, precision):
|
|
|
|
| 9 |
|
| 10 |
from src.display.formatting import make_clickable_model
|
| 11 |
# changes to be made here
|
| 12 |
+
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, ClosedEndedMultilingualColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn
|
| 13 |
from src.submission.check_validity import is_model_on_hub
|
| 14 |
from src.envs import PRIVATE_REPO
|
| 15 |
|
|
|
|
| 30 |
medical_summarization_results: dict
|
| 31 |
aci_results: dict
|
| 32 |
soap_results: dict
|
| 33 |
+
open_ended_arabic_results: dict
|
| 34 |
+
open_ended_french_results: dict
|
| 35 |
+
open_ended_spanish_results: dict
|
| 36 |
+
open_ended_portuguese_results: dict
|
| 37 |
+
open_ended_romanian_results: dict
|
| 38 |
+
open_ended_greek_results: dict
|
| 39 |
+
closed_ended_multilingual_results: dict
|
| 40 |
is_domain_specific: bool
|
| 41 |
use_chat_template: bool
|
| 42 |
# clinical_type_results:dict
|
|
|
|
| 114 |
open_ended_results = {}
|
| 115 |
if "open-ended" in data["results"]:
|
| 116 |
for task in OpenEndedColumns:
|
| 117 |
+
task = task.value
|
| 118 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 119 |
accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None
|
| 120 |
open_ended_results[task.benchmark] = accs
|
|
|
|
| 173 |
continue
|
| 174 |
mean_acc = np.mean(accs) # * 100.0
|
| 175 |
soap_results[task.benchmark] = mean_acc
|
| 176 |
+
open_ended_arabic_results = {}
|
| 177 |
+
if "open-ended-arabic" in data["results"]:
|
| 178 |
+
for task in OpenEndedArabicColumn:
|
| 179 |
task = task.value
|
| 180 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 181 |
+
accs = data["results"]["open-ended-arabic"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-arabic"]["overall"] else None
|
| 182 |
+
open_ended_arabic_results[task.benchmark] = accs
|
| 183 |
+
if open_ended_arabic_results["ELO_intervals"] is not None and open_ended_arabic_results["Score_intervals"] is not None:
|
| 184 |
+
open_ended_arabic_results["ELO_intervals"] = "+" + str(open_ended_arabic_results["ELO_intervals"][1]) + "/-" + str(abs(float(open_ended_arabic_results["ELO_intervals"][0])))
|
| 185 |
+
open_ended_arabic_results["Score_intervals"] = "+" + str(open_ended_arabic_results["Score_intervals"][1]) + "/-" + str(abs(float(open_ended_arabic_results["Score_intervals"][0])))
|
| 186 |
+
open_ended_french_results = {}
|
| 187 |
+
if "open-ended-french" in data["results"]:
|
| 188 |
+
for task in OpenEndedFrenchColumn:
|
| 189 |
+
task = task.value
|
| 190 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
| 191 |
+
accs = data["results"]["open-ended-french"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-french"]["overall"] else None
|
| 192 |
+
open_ended_french_results[task.benchmark] = accs
|
| 193 |
+
if open_ended_french_results["ELO_intervals"] is not None and open_ended_french_results["Score_intervals"] is not None:
|
| 194 |
+
open_ended_french_results["ELO_intervals"] = "+" + str(open_ended_french_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_french_results["ELO_intervals"][0]))
|
| 195 |
+
open_ended_french_results["Score_intervals"] = "+" + str(open_ended_french_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_french_results["Score_intervals"][0]))
|
| 196 |
+
open_ended_spanish_results = {}
|
| 197 |
+
if "open-ended-spanish" in data["results"]:
|
| 198 |
+
for task in OpenEndedSpanishColumn:
|
| 199 |
+
task = task.value
|
| 200 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
| 201 |
+
accs = data["results"]["open-ended-spanish"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-spanish"]["overall"] else None
|
| 202 |
+
open_ended_spanish_results[task.benchmark] = accs
|
| 203 |
+
if open_ended_spanish_results["ELO_intervals"] is not None and open_ended_spanish_results["Score_intervals"] is not None:
|
| 204 |
+
open_ended_spanish_results["ELO_intervals"] = "+" + str(open_ended_spanish_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_spanish_results["ELO_intervals"][0]))
|
| 205 |
+
open_ended_spanish_results["Score_intervals"] = "+" + str(open_ended_spanish_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_spanish_results["Score_intervals"][0]))
|
| 206 |
+
open_ended_portuguese_results = {}
|
| 207 |
+
if "open-ended-portuguese" in data["results"]:
|
| 208 |
+
for task in OpenEndedPortugueseColumn:
|
| 209 |
+
task = task.value
|
| 210 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
| 211 |
+
accs = data["results"]["open-ended-portuguese"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-portuguese"]["overall"] else None
|
| 212 |
+
open_ended_portuguese_results[task.benchmark] = accs
|
| 213 |
+
if open_ended_portuguese_results["ELO_intervals"] is not None and open_ended_portuguese_results["Score_intervals"] is not None:
|
| 214 |
+
open_ended_portuguese_results["ELO_intervals"] = "+" + str(open_ended_portuguese_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_portuguese_results["ELO_intervals"][0]))
|
| 215 |
+
open_ended_portuguese_results["Score_intervals"] = "+" + str(open_ended_portuguese_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_portuguese_results["Score_intervals"][0]))
|
| 216 |
+
open_ended_romanian_results = {}
|
| 217 |
+
if "open-ended-romanian" in data["results"]:
|
| 218 |
+
for task in OpenEndedRomanianColumn:
|
| 219 |
+
task = task.value
|
| 220 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
| 221 |
+
accs = data["results"]["open-ended-romanian"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-romanian"]["overall"] else None
|
| 222 |
+
open_ended_romanian_results[task.benchmark] = accs
|
| 223 |
+
if open_ended_romanian_results["ELO_intervals"] is not None and open_ended_romanian_results["Score_intervals"] is not None:
|
| 224 |
+
open_ended_romanian_results["ELO_intervals"] = "+" + str(open_ended_romanian_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_romanian_results["ELO_intervals"][0]))
|
| 225 |
+
open_ended_romanian_results["Score_intervals"] = "+" + str(open_ended_romanian_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_romanian_results["Score_intervals"][0]))
|
| 226 |
+
open_ended_greek_results = {}
|
| 227 |
+
if "open-ended-greek" in data["results"]:
|
| 228 |
+
for task in OpenEndedGreekColumn:
|
| 229 |
+
task = task.value
|
| 230 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
| 231 |
+
accs = data["results"]["open-ended-greek"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-greek"]["overall"] else None
|
| 232 |
+
open_ended_greek_results[task.benchmark] = accs
|
| 233 |
+
if open_ended_greek_results["ELO_intervals"] is not None and open_ended_greek_results["Score_intervals"] is not None:
|
| 234 |
+
open_ended_greek_results["ELO_intervals"] = "+" + str(open_ended_greek_results["ELO_intervals"][1]) + "/-" + str(abs(float(open_ended_greek_results["ELO_intervals"][0])))
|
| 235 |
+
open_ended_greek_results["Score_intervals"] = "+" + str(open_ended_greek_results["Score_intervals"][1]) + "/-" + str(abs(float(open_ended_greek_results["Score_intervals"][0])))
|
| 236 |
+
closed_ended_multilingual_results = {}
|
| 237 |
+
if "closed-ended-multilingual" in data["results"]:
|
| 238 |
+
for task in ClosedEndedMultilingualColumns:
|
| 239 |
+
task = task.value
|
| 240 |
+
accs = data["results"]["closed-ended-multilingual"][task.benchmark]["accuracy"] if task.benchmark in data["results"]["closed-ended-multilingual"] else None
|
| 241 |
+
closed_ended_multilingual_results[task.benchmark] = accs
|
| 242 |
+
|
| 243 |
+
# #add the
|
| 244 |
+
# closed_ended_arabic_results = {}
|
| 245 |
+
# if PRIVATE_REPO and "closed-ended-arabic" in data["results"]:
|
| 246 |
+
# for task in ClosedEndedArabicColumns:
|
| 247 |
+
# task = task.value
|
| 248 |
+
# # We average all scores of a given metric (not all metrics are present in all files)
|
| 249 |
+
# try:
|
| 250 |
+
# accs = np.array([v.get(task.metric, None) for k, v in data["results"]["closed-ended-arabic"].items() if task.benchmark == k])
|
| 251 |
+
# except:
|
| 252 |
+
# # breakpoint()
|
| 253 |
+
# accs = np.array([])
|
| 254 |
+
# if accs.size == 0 or any([acc is None for acc in accs]):
|
| 255 |
+
# continue
|
| 256 |
+
# mean_acc = np.mean(accs) # * 100.0
|
| 257 |
+
# closed_ended_arabic_results[task.benchmark] = mean_acc
|
| 258 |
+
|
| 259 |
+
|
| 260 |
# if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
|
| 261 |
# open_ended_results = {}
|
| 262 |
# med_safety_results = {}
|
|
|
|
| 288 |
medical_summarization_results=medical_summarization_results,
|
| 289 |
aci_results=aci_results,
|
| 290 |
soap_results=soap_results,
|
| 291 |
+
open_ended_arabic_results=open_ended_arabic_results,
|
| 292 |
+
open_ended_french_results=open_ended_french_results,
|
| 293 |
+
open_ended_spanish_results=open_ended_spanish_results,
|
| 294 |
+
open_ended_portuguese_results=open_ended_portuguese_results,
|
| 295 |
+
open_ended_romanian_results=open_ended_romanian_results,
|
| 296 |
+
open_ended_greek_results=open_ended_greek_results,
|
| 297 |
+
closed_ended_multilingual_results=closed_ended_multilingual_results,
|
| 298 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
| 299 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
| 300 |
precision=precision,
|
|
|
|
| 397 |
for task in SOAPColumns:
|
| 398 |
data_dict[task.value.col_name] = self.soap_results[task.value.benchmark]
|
| 399 |
return data_dict
|
| 400 |
+
if subset == "open_ended_arabic":
|
| 401 |
+
if len(self.open_ended_arabic_results) > 0:
|
| 402 |
+
for task in OpenEndedArabicColumn:
|
| 403 |
+
data_dict[task.value.col_name] = self.open_ended_arabic_results[task.value.benchmark]
|
| 404 |
+
return data_dict
|
| 405 |
+
if subset == "open_ended_french":
|
| 406 |
+
if len(self.open_ended_french_results) > 0:
|
| 407 |
+
for task in OpenEndedFrenchColumn:
|
| 408 |
+
data_dict[task.value.col_name] = self.open_ended_french_results[task.value.benchmark]
|
| 409 |
+
return data_dict
|
| 410 |
+
if subset == "open_ended_spanish":
|
| 411 |
+
if len(self.open_ended_spanish_results) > 0:
|
| 412 |
+
for task in OpenEndedSpanishColumn:
|
| 413 |
+
data_dict[task.value.col_name] = self.open_ended_spanish_results[task.value.benchmark]
|
| 414 |
+
return data_dict
|
| 415 |
+
if subset == "open_ended_portuguese":
|
| 416 |
+
if len(self.open_ended_portuguese_results) > 0:
|
| 417 |
+
for task in OpenEndedPortugueseColumn:
|
| 418 |
+
data_dict[task.value.col_name] = self.open_ended_portuguese_results[task.value.benchmark]
|
| 419 |
+
return data_dict
|
| 420 |
+
if subset == "open_ended_romanian":
|
| 421 |
+
if len(self.open_ended_romanian_results) > 0:
|
| 422 |
+
for task in OpenEndedRomanianColumn:
|
| 423 |
+
data_dict[task.value.col_name] = self.open_ended_romanian_results[task.value.benchmark]
|
| 424 |
+
return data_dict
|
| 425 |
+
if subset == "open_ended_greek":
|
| 426 |
+
if len(self.open_ended_greek_results) > 0:
|
| 427 |
+
for task in OpenEndedGreekColumn:
|
| 428 |
+
data_dict[task.value.col_name] = self.open_ended_greek_results[task.value.benchmark]
|
| 429 |
+
return data_dict
|
| 430 |
+
if subset == "closed_ended_multilingual":
|
| 431 |
+
average = sum([v for v in self.closed_ended_multilingual_results.values() if v is not None]) / len(ClosedEndedMultilingualColumns)
|
| 432 |
data_dict[AutoEvalColumn.average.name] = average
|
| 433 |
+
if len(self.closed_ended_multilingual_results) > 0:
|
| 434 |
+
for task in ClosedEndedMultilingualColumns:
|
| 435 |
+
data_dict[task.value.col_name] = self.closed_ended_multilingual_results[task.value.benchmark]
|
| 436 |
return data_dict
|
| 437 |
|
| 438 |
def get_request_file_for_model(requests_path, model_name, precision):
|
src/populate.py
CHANGED
|
@@ -5,7 +5,7 @@ import pandas as pd
|
|
| 5 |
|
| 6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
# changes to be made here
|
| 8 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns,
|
| 9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 10 |
from src.envs import PRIVATE_REPO
|
| 11 |
|
|
@@ -16,14 +16,15 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
| 16 |
# print(raw_data)
|
| 17 |
# raise Exception("stop")
|
| 18 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
| 19 |
-
|
|
|
|
| 20 |
df = pd.DataFrame.from_records(all_data_json)
|
| 21 |
# changes to be made here
|
| 22 |
if subset == "datasets":
|
| 23 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 24 |
elif subset == "med_safety":
|
| 25 |
df = df.sort_values(by=["Harmfulness Score"], ascending=True)
|
| 26 |
-
elif subset
|
| 27 |
df = df.sort_values(by=["ELO"], ascending=False)
|
| 28 |
elif subset == "medical_summarization":
|
| 29 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
|
@@ -31,7 +32,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
| 31 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
| 32 |
elif subset == "soap":
|
| 33 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
| 34 |
-
elif subset == "
|
| 35 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 36 |
cols = list(set(df.columns).intersection(set(cols)))
|
| 37 |
df = df[cols].round(decimals=2)
|
|
|
|
| 5 |
|
| 6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
# changes to be made here
|
| 8 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn, ClosedEndedMultilingualColumns
|
| 9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 10 |
from src.envs import PRIVATE_REPO
|
| 11 |
|
|
|
|
| 16 |
# print(raw_data)
|
| 17 |
# raise Exception("stop")
|
| 18 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
| 19 |
+
# if subset.startswith("open_ended"):
|
| 20 |
+
# breakpoint()
|
| 21 |
df = pd.DataFrame.from_records(all_data_json)
|
| 22 |
# changes to be made here
|
| 23 |
if subset == "datasets":
|
| 24 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 25 |
elif subset == "med_safety":
|
| 26 |
df = df.sort_values(by=["Harmfulness Score"], ascending=True)
|
| 27 |
+
elif subset.startswith("open_ended"):
|
| 28 |
df = df.sort_values(by=["ELO"], ascending=False)
|
| 29 |
elif subset == "medical_summarization":
|
| 30 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
|
|
|
| 32 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
| 33 |
elif subset == "soap":
|
| 34 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
| 35 |
+
elif subset == "closed_ended_multilingual":
|
| 36 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 37 |
cols = list(set(df.columns).intersection(set(cols)))
|
| 38 |
df = df[cols].round(decimals=2)
|