Spaces:
Running
Running
Commit
·
0da5ee3
1
Parent(s):
b5701cc
[ADD] Open-ended evaluation
Browse files- app.py +125 -65
- src/about.py +4 -8
- src/display/utils.py +17 -8
- src/leaderboard/read_evals.py +56 -46
- src/populate.py +5 -2
app.py
CHANGED
|
@@ -21,9 +21,9 @@ from src.about import (
|
|
| 21 |
from src.display.css_html_js import custom_css
|
| 22 |
from src.display.utils import (
|
| 23 |
DATASET_BENCHMARK_COLS,
|
| 24 |
-
|
| 25 |
DATASET_COLS,
|
| 26 |
-
|
| 27 |
EVAL_COLS,
|
| 28 |
EVAL_TYPES,
|
| 29 |
NUMERIC_INTERVALS,
|
|
@@ -64,9 +64,10 @@ except Exception:
|
|
| 64 |
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
|
| 65 |
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
|
|
|
| 70 |
# # Token based results
|
| 71 |
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
| 72 |
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
|
|
@@ -83,8 +84,12 @@ harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
|
| 83 |
|
| 84 |
|
| 85 |
def update_df(shown_columns, subset="datasets"):
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
# else:
|
| 89 |
# match evaluation_metric:
|
| 90 |
# case "Span Based":
|
|
@@ -98,7 +103,7 @@ def update_df(shown_columns, subset="datasets"):
|
|
| 98 |
|
| 99 |
|
| 100 |
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
| 101 |
-
|
| 102 |
return leaderboard_table_df[value_cols], hidden_leader_board_df
|
| 103 |
|
| 104 |
|
|
@@ -196,60 +201,6 @@ def filter_models(
|
|
| 196 |
|
| 197 |
return filtered_df
|
| 198 |
|
| 199 |
-
def change_submit_request_form(model_architecture):
|
| 200 |
-
match model_architecture:
|
| 201 |
-
case "Encoder":
|
| 202 |
-
return (
|
| 203 |
-
gr.Textbox(label="Threshold for gliner models", visible=False),
|
| 204 |
-
gr.Radio(
|
| 205 |
-
choices=["True", "False"],
|
| 206 |
-
label="Load GLiNER Tokenizer",
|
| 207 |
-
visible=False
|
| 208 |
-
),
|
| 209 |
-
gr.Dropdown(
|
| 210 |
-
choices=[prompt_template.value for prompt_template in PromptTemplateName],
|
| 211 |
-
label="Prompt for generation",
|
| 212 |
-
multiselect=False,
|
| 213 |
-
# value="HTML Highlighted Spans",
|
| 214 |
-
interactive=True,
|
| 215 |
-
visible=False
|
| 216 |
-
)
|
| 217 |
-
)
|
| 218 |
-
case "Decoder":
|
| 219 |
-
return (
|
| 220 |
-
gr.Textbox(label="Threshold for gliner models", visible=False),
|
| 221 |
-
gr.Radio(
|
| 222 |
-
choices=["True", "False"],
|
| 223 |
-
label="Load GLiNER Tokenizer",
|
| 224 |
-
visible=False
|
| 225 |
-
),
|
| 226 |
-
gr.Dropdown(
|
| 227 |
-
choices=[prompt_template.value for prompt_template in PromptTemplateName],
|
| 228 |
-
label="Prompt for generation",
|
| 229 |
-
multiselect=False,
|
| 230 |
-
# value="HTML Highlighted Spans",
|
| 231 |
-
interactive=True,
|
| 232 |
-
visible=True
|
| 233 |
-
)
|
| 234 |
-
)
|
| 235 |
-
case "GLiNER Encoder":
|
| 236 |
-
return (
|
| 237 |
-
gr.Textbox(label="Threshold for gliner models", visible=True),
|
| 238 |
-
gr.Radio(
|
| 239 |
-
choices=["True", "False"],
|
| 240 |
-
label="Load GLiNER Tokenizer",
|
| 241 |
-
visible=True
|
| 242 |
-
),
|
| 243 |
-
gr.Dropdown(
|
| 244 |
-
choices=[prompt_template.value for prompt_template in PromptTemplateName],
|
| 245 |
-
label="Prompt for generation",
|
| 246 |
-
multiselect=False,
|
| 247 |
-
# value="HTML Highlighted Spans",
|
| 248 |
-
interactive=True,
|
| 249 |
-
visible=False
|
| 250 |
-
)
|
| 251 |
-
)
|
| 252 |
-
|
| 253 |
|
| 254 |
demo = gr.Blocks(css=custom_css)
|
| 255 |
with demo:
|
|
@@ -269,11 +220,11 @@ with demo:
|
|
| 269 |
)
|
| 270 |
with gr.Row():
|
| 271 |
shown_columns = gr.CheckboxGroup(
|
| 272 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and
|
| 273 |
value=[
|
| 274 |
c.name
|
| 275 |
for c in fields(AutoEvalColumn)
|
| 276 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and
|
| 277 |
],
|
| 278 |
label="Select columns to show",
|
| 279 |
elem_id="column-select",
|
|
@@ -371,8 +322,117 @@ with demo:
|
|
| 371 |
)
|
| 372 |
|
| 373 |
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
| 374 |
-
gr.
|
| 375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
| 377 |
gr.Markdown("# Coming Soon!!!", elem_classes="markdown-text")
|
| 378 |
pass
|
|
|
|
| 21 |
from src.display.css_html_js import custom_css
|
| 22 |
from src.display.utils import (
|
| 23 |
DATASET_BENCHMARK_COLS,
|
| 24 |
+
OPEN_ENDED_BENCHMARK_COLS,
|
| 25 |
DATASET_COLS,
|
| 26 |
+
OPEN_ENDED_COLS,
|
| 27 |
EVAL_COLS,
|
| 28 |
EVAL_TYPES,
|
| 29 |
NUMERIC_INTERVALS,
|
|
|
|
| 64 |
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
|
| 65 |
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
| 66 |
|
| 67 |
+
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
|
| 68 |
+
open_ended_leaderboard_df = open_ended_original_df.copy()
|
| 69 |
|
| 70 |
+
# breakpoint()
|
| 71 |
# # Token based results
|
| 72 |
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
| 73 |
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
|
|
|
|
| 84 |
|
| 85 |
|
| 86 |
def update_df(shown_columns, subset="datasets"):
|
| 87 |
+
if subset == "datasets":
|
| 88 |
+
leaderboard_table_df = harness_datasets_leaderboard_df.copy()
|
| 89 |
+
hidden_leader_board_df = harness_datasets_original_df
|
| 90 |
+
elif subset == "open_ended":
|
| 91 |
+
leaderboard_table_df = open_ended_leaderboard_df.copy()
|
| 92 |
+
hidden_leader_board_df = open_ended_original_df
|
| 93 |
# else:
|
| 94 |
# match evaluation_metric:
|
| 95 |
# case "Span Based":
|
|
|
|
| 103 |
|
| 104 |
|
| 105 |
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
| 106 |
+
# breakpoint()
|
| 107 |
return leaderboard_table_df[value_cols], hidden_leader_board_df
|
| 108 |
|
| 109 |
|
|
|
|
| 201 |
|
| 202 |
return filtered_df
|
| 203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
demo = gr.Blocks(css=custom_css)
|
| 206 |
with demo:
|
|
|
|
| 220 |
)
|
| 221 |
with gr.Row():
|
| 222 |
shown_columns = gr.CheckboxGroup(
|
| 223 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
| 224 |
value=[
|
| 225 |
c.name
|
| 226 |
for c in fields(AutoEvalColumn)
|
| 227 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
| 228 |
],
|
| 229 |
label="Select columns to show",
|
| 230 |
elem_id="column-select",
|
|
|
|
| 322 |
)
|
| 323 |
|
| 324 |
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
| 325 |
+
with gr.Row():
|
| 326 |
+
with gr.Column():
|
| 327 |
+
with gr.Row():
|
| 328 |
+
search_bar = gr.Textbox(
|
| 329 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 330 |
+
show_label=False,
|
| 331 |
+
elem_id="search-bar",
|
| 332 |
+
)
|
| 333 |
+
with gr.Row():
|
| 334 |
+
shown_columns = gr.CheckboxGroup(
|
| 335 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
| 336 |
+
value=[
|
| 337 |
+
c.name
|
| 338 |
+
for c in fields(AutoEvalColumn)
|
| 339 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
| 340 |
+
],
|
| 341 |
+
label="Select columns to show",
|
| 342 |
+
elem_id="column-select",
|
| 343 |
+
interactive=True,
|
| 344 |
+
)
|
| 345 |
+
# with gr.Row():
|
| 346 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 347 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 348 |
+
# )
|
| 349 |
+
with gr.Column(min_width=320):
|
| 350 |
+
# with gr.Box(elem_id="box-filter"):
|
| 351 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 352 |
+
label="Model Types",
|
| 353 |
+
choices=[t.to_str() for t in ModelType],
|
| 354 |
+
value=[t.to_str() for t in ModelType],
|
| 355 |
+
interactive=True,
|
| 356 |
+
elem_id="filter-columns-type",
|
| 357 |
+
)
|
| 358 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
| 359 |
+
# label="Architecture Types",
|
| 360 |
+
# choices=[i.value.name for i in ModelArch],
|
| 361 |
+
# value=[i.value.name for i in ModelArch],
|
| 362 |
+
# interactive=True,
|
| 363 |
+
# elem_id="filter-columns-architecture",
|
| 364 |
+
# )
|
| 365 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 366 |
+
label="Domain specific models",
|
| 367 |
+
choices=["Yes", "No"],
|
| 368 |
+
value=["Yes", "No"],
|
| 369 |
+
interactive=True,
|
| 370 |
+
elem_id="filter-columns-type",
|
| 371 |
+
)
|
| 372 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 373 |
+
label="Model sizes (in billions of parameters)",
|
| 374 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 375 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 376 |
+
interactive=True,
|
| 377 |
+
elem_id="filter-columns-size",
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="open_ended")
|
| 381 |
+
|
| 382 |
+
leaderboard_table = gr.components.Dataframe(
|
| 383 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 384 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 385 |
+
datatype=TYPES,
|
| 386 |
+
elem_id="leaderboard-table",
|
| 387 |
+
interactive=False,
|
| 388 |
+
visible=True,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 392 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 393 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
| 394 |
+
headers=OPEN_ENDED_COLS,
|
| 395 |
+
datatype=TYPES,
|
| 396 |
+
visible=False,
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
search_bar.submit(
|
| 401 |
+
update_table,
|
| 402 |
+
[
|
| 403 |
+
hidden_leaderboard_table_for_search,
|
| 404 |
+
shown_columns,
|
| 405 |
+
search_bar,
|
| 406 |
+
filter_columns_type,
|
| 407 |
+
filter_domain_specific,
|
| 408 |
+
filter_columns_size
|
| 409 |
+
# filter_columns_architecture
|
| 410 |
+
],
|
| 411 |
+
leaderboard_table,
|
| 412 |
+
)
|
| 413 |
+
for selector in [
|
| 414 |
+
shown_columns,
|
| 415 |
+
filter_columns_type,
|
| 416 |
+
filter_domain_specific,
|
| 417 |
+
# filter_columns_architecture,
|
| 418 |
+
filter_columns_size,
|
| 419 |
+
# deleted_models_visibility,
|
| 420 |
+
]:
|
| 421 |
+
selector.change(
|
| 422 |
+
update_table,
|
| 423 |
+
[
|
| 424 |
+
hidden_leaderboard_table_for_search,
|
| 425 |
+
shown_columns,
|
| 426 |
+
search_bar,
|
| 427 |
+
filter_columns_type,
|
| 428 |
+
filter_domain_specific,
|
| 429 |
+
filter_columns_size
|
| 430 |
+
# filter_columns_architecture,
|
| 431 |
+
],
|
| 432 |
+
leaderboard_table,
|
| 433 |
+
queue=True,
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
| 437 |
gr.Markdown("# Coming Soon!!!", elem_classes="markdown-text")
|
| 438 |
pass
|
src/about.py
CHANGED
|
@@ -27,19 +27,15 @@ class HarnessTasks(Enum):
|
|
| 27 |
# task6 = Task("", "f1", "")
|
| 28 |
|
| 29 |
@dataclass
|
| 30 |
-
class
|
| 31 |
benchmark: str
|
| 32 |
metric: str
|
| 33 |
col_name: str
|
| 34 |
|
| 35 |
-
class
|
| 36 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
type2 = ClinicalType("drug", "f1", "DRUG")
|
| 40 |
-
type3 = ClinicalType("procedure", "f1", "PROCEDURE")
|
| 41 |
-
type4 = ClinicalType("gene", "f1", "GENE")
|
| 42 |
-
type5 = ClinicalType("gene variant", "f1", "GENE VARIANT")
|
| 43 |
|
| 44 |
|
| 45 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
|
| 27 |
# task6 = Task("", "f1", "")
|
| 28 |
|
| 29 |
@dataclass
|
| 30 |
+
class OpenEndedColumn:
|
| 31 |
benchmark: str
|
| 32 |
metric: str
|
| 33 |
col_name: str
|
| 34 |
|
| 35 |
+
class OpenEndedColumns(Enum):
|
| 36 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 37 |
+
column0 = OpenEndedColumn("ELO", "score", "ELO")
|
| 38 |
+
column1 = OpenEndedColumn("Score", "score", "Score")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
NUM_FEWSHOT = 0 # Change with your few shot
|
src/display/utils.py
CHANGED
|
@@ -3,8 +3,7 @@ from enum import Enum
|
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
-
from src.about import HarnessTasks
|
| 7 |
-
from src.about import ClinicalTypes
|
| 8 |
|
| 9 |
|
| 10 |
def fields(raw_class):
|
|
@@ -20,9 +19,12 @@ class ColumnContent:
|
|
| 20 |
type: str
|
| 21 |
displayed_by_default: bool
|
| 22 |
hidden: bool = False
|
|
|
|
| 23 |
never_hidden: bool = False
|
| 24 |
dataset_task_col: bool = False
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
## Leaderboard columns
|
|
@@ -32,9 +34,11 @@ auto_eval_column_dict = []
|
|
| 32 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 33 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 34 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
| 35 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
|
| 36 |
for task in HarnessTasks:
|
| 37 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True)])
|
|
|
|
|
|
|
| 38 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
| 39 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
| 40 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
|
@@ -181,8 +185,11 @@ class EvaluationMetrics(Enum):
|
|
| 181 |
|
| 182 |
|
| 183 |
# Column selection
|
| 184 |
-
DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
| 186 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
| 187 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 188 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
|
@@ -191,7 +198,9 @@ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
|
| 191 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 192 |
|
| 193 |
DATASET_BENCHMARK_COLS = [t.value.col_name for t in HarnessTasks]
|
| 194 |
-
|
|
|
|
|
|
|
| 195 |
|
| 196 |
NUMERIC_INTERVALS = {
|
| 197 |
"?": pd.Interval(-1, 0, closed="right"),
|
|
|
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
+
from src.about import HarnessTasks, OpenEndedColumns
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def fields(raw_class):
|
|
|
|
| 19 |
type: str
|
| 20 |
displayed_by_default: bool
|
| 21 |
hidden: bool = False
|
| 22 |
+
invariant: bool = True
|
| 23 |
never_hidden: bool = False
|
| 24 |
dataset_task_col: bool = False
|
| 25 |
+
open_ended_col: bool = False
|
| 26 |
+
med_safety_col: bool = False
|
| 27 |
+
cross_examination_col: bool = False
|
| 28 |
|
| 29 |
|
| 30 |
## Leaderboard columns
|
|
|
|
| 34 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 35 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 36 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
| 37 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True, invariant=False)])
|
| 38 |
for task in HarnessTasks:
|
| 39 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)])
|
| 40 |
+
for column in OpenEndedColumns:
|
| 41 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_col=True, invariant=False)])
|
| 42 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
| 43 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
| 44 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
|
|
|
| 185 |
|
| 186 |
|
| 187 |
# Column selection
|
| 188 |
+
DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.cross_examination_col]
|
| 189 |
+
OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col and not c.med_safety_col and not c.cross_examination_col]
|
| 190 |
+
MED_SAFETY_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.dataset_task_col and not c.cross_examination_col]
|
| 191 |
+
CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.dataset_task_col]
|
| 192 |
+
|
| 193 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
| 194 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 195 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
|
|
|
| 198 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 199 |
|
| 200 |
DATASET_BENCHMARK_COLS = [t.value.col_name for t in HarnessTasks]
|
| 201 |
+
OPEN_ENDED_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedColumns]
|
| 202 |
+
# MED_SAFETY_BENCHMARK_COLS = [t.value.col_name for t in MedSafetyTasks]
|
| 203 |
+
# CROSS_EXAMINATION_BENCHMARK_COLS = [t.value.col_name for t in CrossExaminationTasks]
|
| 204 |
|
| 205 |
NUMERIC_INTERVALS = {
|
| 206 |
"?": pd.Interval(-1, 0, closed="right"),
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -8,7 +8,7 @@ import dateutil
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
from src.display.formatting import make_clickable_model
|
| 11 |
-
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType,
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
|
|
@@ -22,6 +22,9 @@ class EvalResult:
|
|
| 22 |
model: str
|
| 23 |
revision: str # commit hash, "" if main
|
| 24 |
dataset_results: dict
|
|
|
|
|
|
|
|
|
|
| 25 |
is_domain_specific: bool
|
| 26 |
use_chat_template: bool
|
| 27 |
# clinical_type_results:dict
|
|
@@ -90,6 +93,19 @@ class EvalResult:
|
|
| 90 |
continue
|
| 91 |
mean_acc = np.mean(accs) # * 100.0
|
| 92 |
harness_results[task.benchmark] = mean_acc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# types_results = {}
|
| 94 |
# for clinical_type in ClinicalTypes:
|
| 95 |
# clinical_type = clinical_type.value
|
|
@@ -109,6 +125,9 @@ class EvalResult:
|
|
| 109 |
model=model,
|
| 110 |
revision=config.get("revision", ""),
|
| 111 |
dataset_results=harness_results,
|
|
|
|
|
|
|
|
|
|
| 112 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
| 113 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
| 114 |
precision=precision,
|
|
@@ -146,60 +165,51 @@ class EvalResult:
|
|
| 146 |
|
| 147 |
def to_dict(self, subset):
|
| 148 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
if subset == "datasets":
|
| 150 |
average = sum([v for v in self.dataset_results.values() if v is not None]) / len(HarnessTasks)
|
| 151 |
-
data_dict =
|
| 152 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
| 153 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 154 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 155 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol + (" 🏥" if self.is_domain_specific else ""),
|
| 156 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 157 |
-
# AutoEvalColumn.architecture.name: self.architecture.value.name,
|
| 158 |
-
# AutoEvalColumn.backbone.name: self.backbone,
|
| 159 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 160 |
-
AutoEvalColumn.is_domain_specific.name: self.is_domain_specific,
|
| 161 |
-
AutoEvalColumn.use_chat_template.name: self.use_chat_template,
|
| 162 |
-
AutoEvalColumn.revision.name: self.revision,
|
| 163 |
-
AutoEvalColumn.average.name: average,
|
| 164 |
-
AutoEvalColumn.license.name: self.license,
|
| 165 |
-
AutoEvalColumn.likes.name: self.likes,
|
| 166 |
-
AutoEvalColumn.params.name: self.num_params,
|
| 167 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 168 |
-
AutoEvalColumn.date.name: self.date,
|
| 169 |
-
"display_result" : self.display_result,
|
| 170 |
-
}
|
| 171 |
if len(self.dataset_results) > 0:
|
| 172 |
for task in HarnessTasks:
|
| 173 |
data_dict[task.value.col_name] = self.dataset_results[task.value.benchmark]
|
| 174 |
-
|
| 175 |
return data_dict
|
| 176 |
|
| 177 |
-
if subset == "
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 182 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 183 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 184 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 185 |
-
AutoEvalColumn.architecture.name: self.architecture.value.name,
|
| 186 |
-
AutoEvalColumn.backbone.name: self.backbone,
|
| 187 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 188 |
-
AutoEvalColumn.revision.name: self.revision,
|
| 189 |
-
AutoEvalColumn.average.name: average,
|
| 190 |
-
AutoEvalColumn.license.name: self.license,
|
| 191 |
-
AutoEvalColumn.likes.name: self.likes,
|
| 192 |
-
AutoEvalColumn.params.name: self.num_params,
|
| 193 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 194 |
-
"display_result" : self.display_result,
|
| 195 |
-
}
|
| 196 |
-
|
| 197 |
-
for clinical_type in ClinicalTypes:
|
| 198 |
-
data_dict[clinical_type.value.col_name] = self.clinical_type_results[clinical_type.value.benchmark]
|
| 199 |
-
|
| 200 |
return data_dict
|
| 201 |
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
def get_request_file_for_model(requests_path, model_name, precision):
|
| 205 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
from src.display.formatting import make_clickable_model
|
| 11 |
+
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
|
|
|
|
| 22 |
model: str
|
| 23 |
revision: str # commit hash, "" if main
|
| 24 |
dataset_results: dict
|
| 25 |
+
open_ended_results: dict
|
| 26 |
+
med_safety_results: dict
|
| 27 |
+
cross_examination_results: dict
|
| 28 |
is_domain_specific: bool
|
| 29 |
use_chat_template: bool
|
| 30 |
# clinical_type_results:dict
|
|
|
|
| 93 |
continue
|
| 94 |
mean_acc = np.mean(accs) # * 100.0
|
| 95 |
harness_results[task.benchmark] = mean_acc
|
| 96 |
+
open_ended_results = {}
|
| 97 |
+
if "open-ended" in data["results"]:
|
| 98 |
+
for task in OpenEndedColumns:
|
| 99 |
+
task = task.value
|
| 100 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
| 101 |
+
accs = np.array([v for k, v in data["results"]["open-ended"]["overall"].items() if task.benchmark == k])
|
| 102 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 103 |
+
continue
|
| 104 |
+
mean_acc = np.mean(accs) # * 100.0
|
| 105 |
+
open_ended_results[task.benchmark] = mean_acc
|
| 106 |
+
# breakpoint()
|
| 107 |
+
med_safety_results = {}
|
| 108 |
+
cross_examination_results = {}
|
| 109 |
# types_results = {}
|
| 110 |
# for clinical_type in ClinicalTypes:
|
| 111 |
# clinical_type = clinical_type.value
|
|
|
|
| 125 |
model=model,
|
| 126 |
revision=config.get("revision", ""),
|
| 127 |
dataset_results=harness_results,
|
| 128 |
+
open_ended_results=open_ended_results,
|
| 129 |
+
med_safety_results=med_safety_results,
|
| 130 |
+
cross_examination_results=cross_examination_results,
|
| 131 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
| 132 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
| 133 |
precision=precision,
|
|
|
|
| 165 |
|
| 166 |
def to_dict(self, subset):
|
| 167 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 168 |
+
data_dict = {
|
| 169 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
| 170 |
+
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 171 |
+
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 172 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol + (" 🏥" if self.is_domain_specific else ""),
|
| 173 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 174 |
+
# AutoEvalColumn.architecture.name: self.architecture.value.name,
|
| 175 |
+
# AutoEvalColumn.backbone.name: self.backbone,
|
| 176 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 177 |
+
AutoEvalColumn.is_domain_specific.name: self.is_domain_specific,
|
| 178 |
+
AutoEvalColumn.use_chat_template.name: self.use_chat_template,
|
| 179 |
+
AutoEvalColumn.revision.name: self.revision,
|
| 180 |
+
AutoEvalColumn.license.name: self.license,
|
| 181 |
+
AutoEvalColumn.likes.name: self.likes,
|
| 182 |
+
AutoEvalColumn.params.name: self.num_params,
|
| 183 |
+
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 184 |
+
AutoEvalColumn.date.name: self.date,
|
| 185 |
+
"display_result" : self.display_result,
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
if subset == "datasets":
|
| 189 |
average = sum([v for v in self.dataset_results.values() if v is not None]) / len(HarnessTasks)
|
| 190 |
+
data_dict[AutoEvalColumn.average.name] = average
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
if len(self.dataset_results) > 0:
|
| 192 |
for task in HarnessTasks:
|
| 193 |
data_dict[task.value.col_name] = self.dataset_results[task.value.benchmark]
|
|
|
|
| 194 |
return data_dict
|
| 195 |
|
| 196 |
+
if subset == "open_ended":
|
| 197 |
+
if len(self.open_ended_results) > 0:
|
| 198 |
+
for task in OpenEndedColumns:
|
| 199 |
+
data_dict[task.value.col_name] = self.open_ended_results[task.value.benchmark]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
return data_dict
|
| 201 |
|
| 202 |
+
# if subset == "med_safety":
|
| 203 |
+
# if len(self.med_safety_results) > 0:
|
| 204 |
+
# for task in MedSafetyTasks:
|
| 205 |
+
# data_dict[task.value.col_name] = self.med_safety_results[task.value.benchmark]
|
| 206 |
+
# return data_dict
|
| 207 |
+
|
| 208 |
+
# if subset == "cross_examination":
|
| 209 |
+
# if len(self.cross_examination_results) > 0:
|
| 210 |
+
# for task in CrossExaminationTasks:
|
| 211 |
+
# data_dict[task.value.col_name] = self.cross_examination_results[task.value.benchmark]
|
| 212 |
+
# return data_dict
|
| 213 |
|
| 214 |
def get_request_file_for_model(requests_path, model_name, precision):
|
| 215 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
src/populate.py
CHANGED
|
@@ -4,7 +4,7 @@ import os
|
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
|
| 10 |
|
|
@@ -16,7 +16,10 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
| 16 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
| 17 |
|
| 18 |
df = pd.DataFrame.from_records(all_data_json)
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
cols = list(set(df.columns).intersection(set(cols)))
|
| 21 |
df = df[cols].round(decimals=2)
|
| 22 |
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
|
| 10 |
|
|
|
|
| 16 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
| 17 |
|
| 18 |
df = pd.DataFrame.from_records(all_data_json)
|
| 19 |
+
if subset == "datasets":
|
| 20 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 21 |
+
elif subset == "open_ended":
|
| 22 |
+
df = df.sort_values(by=["ELO"], ascending=False)
|
| 23 |
cols = list(set(df.columns).intersection(set(cols)))
|
| 24 |
df = df[cols].round(decimals=2)
|
| 25 |
|