lybxin's picture
Upload folder using huggingface_hub
66b7c56 verified
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
from typing import Callable, List
import torch
import torch as th
import torch.nn as nn
from einops import rearrange
from model.modules.rotary_embedding_torch import RotaryEmbedding
from model.modules.transformer_modules import (
DecoderLayerStack,
FiLMTransformerDecoderLayer,
PositionalEncoding,
)
from model.utils import prob_mask_like, setup_lip_regressor
from torch.distributions import Categorical
from torch.nn import functional as F
class GuideTransformer(nn.Module):
def __init__(
self,
tokens: int,
num_heads: int = 4,
num_layers: int = 4,
dim: int = 512,
ff_size: int = 1024,
dropout: float = 0.1,
activation: Callable = F.gelu,
use_rotary: bool = True,
cond_feature_dim: int = 1024,
emb_len: int = 798,
num_audio_layers: int = 2,
):
super().__init__()
self.tokens = tokens
self.token_embedding = th.nn.Embedding(
num_embeddings=tokens + 1, # account for sequence start and end tokens
embedding_dim=dim,
)
self.abs_pos_encoding = nn.Identity()
# if rotary, replace absolute embedding with a rotary embedding instance (absolute becomes an identity)
if use_rotary:
self.rotary = RotaryEmbedding(dim=dim)
else:
self.abs_pos_encoding = PositionalEncoding(dim, dropout, batch_first=True)
self.setup_audio_models(cond_feature_dim, num_audio_layers)
self.null_cond_embed = nn.Parameter(torch.randn(1, emb_len, dim))
self.null_cond_hidden = nn.Parameter(torch.randn(1, dim))
self.norm_cond = nn.LayerNorm(dim)
self.cond_projection = nn.Linear(cond_feature_dim, dim)
self.non_attn_cond_projection = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim),
nn.SiLU(),
nn.Linear(dim, dim),
)
# decoder
decoderstack = nn.ModuleList([])
for _ in range(num_layers):
decoderstack.append(
FiLMTransformerDecoderLayer(
dim,
num_heads,
dim_feedforward=ff_size,
dropout=dropout,
activation=activation,
batch_first=True,
rotary=self.rotary,
)
)
self.seqTransDecoder = DecoderLayerStack(decoderstack)
self.final_layer = nn.Linear(dim, tokens)
def _build_single_audio_conv(self, c: int) -> List[nn.Module]:
return [
torch.nn.Conv1d(c, max(256, c), kernel_size=3, dilation=1),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(max(256, c), max(256, c), kernel_size=3, dilation=2),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(max(128, c), max(128, c), kernel_size=3, dilation=3),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(max(128, c), c, kernel_size=3, dilation=1),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(c, c, kernel_size=3, dilation=2),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(c, c, kernel_size=3, dilation=3),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
]
def setup_audio_models(self, cond_feature_dim: int, num_audio_layers: int) -> None:
pre_layers = []
for _ in range(num_audio_layers):
pre_layers += self._build_single_audio_conv(cond_feature_dim)
pre_layers += [
torch.nn.Conv1d(cond_feature_dim, cond_feature_dim, kernel_size=1)
]
pre_layers = torch.nn.ModuleList(pre_layers)
self.pre_audio = nn.Sequential(*pre_layers)
self.audio_model, self.audio_resampler = setup_lip_regressor()
def encode_audio(self, raw_audio: torch.Tensor) -> torch.Tensor:
device = next(self.parameters()).device
a0 = self.audio_resampler(raw_audio[:, :, 0].to(device)) # B x T
a1 = self.audio_resampler(raw_audio[:, :, 1].to(device)) # B x T
with torch.no_grad():
z0 = self.audio_model.feature_extractor(a0)
z1 = self.audio_model.feature_extractor(a1)
emb = torch.cat((z0, z1), axis=1).permute(0, 2, 1)
return emb
def get_tgt_mask(self, size: int, device: str) -> torch.tensor:
mask = torch.tril(
torch.ones((size, size), device=device) == 1
) # Lower triangular matrix
mask = mask.float()
mask = mask.masked_fill(mask == 0, float("-inf")) # Convert zeros to -inf
mask = mask.masked_fill(mask == 1, float(0.0)) # Convert ones to 0
return mask
def forward(
self, tokens: th.Tensor, condition: th.Tensor, cond_drop_prob: float = 0.0
) -> torch.Tensor:
batch_size, device = tokens.shape[0], tokens.device
x = self.token_embedding(tokens)
x = self.abs_pos_encoding(x)
tgt_mask = self.get_tgt_mask(x.shape[1], x.device)
cond_embed = self.encode_audio(condition)
keep_mask = prob_mask_like((batch_size,), 1 - cond_drop_prob, device=device)
keep_mask_embed = rearrange(keep_mask, "b -> b 1 1")
keep_mask_hidden = rearrange(keep_mask, "b -> b 1")
cond_tokens = self.pre_audio(cond_embed.permute(0, 2, 1)).permute(0, 2, 1)
#
cond_tokens = self.cond_projection(cond_tokens)
cond_tokens = self.abs_pos_encoding(cond_tokens)
null_cond_embed = self.null_cond_embed.to(cond_tokens.dtype)
cond_tokens = torch.where(
keep_mask_embed, cond_tokens, null_cond_embed[:, : cond_tokens.shape[1], :]
)
mean_pooled_cond_tokens = cond_tokens.mean(dim=-2)
cond_hidden = self.non_attn_cond_projection(mean_pooled_cond_tokens)
# FiLM conditioning
null_cond_hidden = self.null_cond_hidden.to(cond_tokens.dtype)
cond_hidden = torch.where(keep_mask_hidden, cond_hidden, null_cond_hidden)
cond_tokens = self.norm_cond(cond_tokens)
output = self.seqTransDecoder(x, cond_tokens, cond_hidden, tgt_mask=tgt_mask)
output = self.final_layer(output)
return output
def generate(
self,
condition: th.Tensor,
sequence_length: int,
layers: int,
n_sequences: int = 1,
max_key_len: int = 8,
max_seq_len: int = 240,
top_p: float = 0.94,
) -> torch.Tensor:
"""
:param sequence_length: number of tokens to generate in autoregressive fashion
:param n_sequences: number of sequences to generate simultaneously
:param temperature: temerature of the softmax for sampling from the output logits
:return n_sequences x sequence_length LongTensor containing generated tokens
"""
assert max_key_len == int(max_seq_len / 30), "currently only running for 1fps"
max_key_len *= layers
with th.no_grad():
input_tokens = (
th.zeros(n_sequences, 1, dtype=th.int64).to(condition.device)
+ self.tokens
)
for _ in range(sequence_length * layers):
curr_input_tokens = input_tokens
curr_condition = condition
logits = self.forward(curr_input_tokens, curr_condition)
logits = logits[:, -1, :] # only most recent time step is relevant
one_hot = th.nn.functional.softmax(logits, dim=-1)
sorted_probs, indices = torch.sort(one_hot, dim=-1, descending=True)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
nucleus = cumulative_probs < top_p
nucleus = torch.cat(
[
nucleus.new_ones(nucleus.shape[:-1] + (1,)),
nucleus[..., :-1],
],
dim=-1,
)
sorted_probs[~nucleus] = 0
sorted_probs /= sorted_probs.sum(-1, keepdim=True)
dist = Categorical(sorted_probs)
idx = dist.sample()
tokens = indices.gather(-1, idx.unsqueeze(-1))
input_tokens = th.cat([input_tokens, tokens], dim=-1)
# return generated tokens except for sequence start token
tokens = input_tokens[:, 1:].contiguous()
return tokens