""" Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ from typing import Callable, List import torch import torch as th import torch.nn as nn from einops import rearrange from model.modules.rotary_embedding_torch import RotaryEmbedding from model.modules.transformer_modules import ( DecoderLayerStack, FiLMTransformerDecoderLayer, PositionalEncoding, ) from model.utils import prob_mask_like, setup_lip_regressor from torch.distributions import Categorical from torch.nn import functional as F class GuideTransformer(nn.Module): def __init__( self, tokens: int, num_heads: int = 4, num_layers: int = 4, dim: int = 512, ff_size: int = 1024, dropout: float = 0.1, activation: Callable = F.gelu, use_rotary: bool = True, cond_feature_dim: int = 1024, emb_len: int = 798, num_audio_layers: int = 2, ): super().__init__() self.tokens = tokens self.token_embedding = th.nn.Embedding( num_embeddings=tokens + 1, # account for sequence start and end tokens embedding_dim=dim, ) self.abs_pos_encoding = nn.Identity() # if rotary, replace absolute embedding with a rotary embedding instance (absolute becomes an identity) if use_rotary: self.rotary = RotaryEmbedding(dim=dim) else: self.abs_pos_encoding = PositionalEncoding(dim, dropout, batch_first=True) self.setup_audio_models(cond_feature_dim, num_audio_layers) self.null_cond_embed = nn.Parameter(torch.randn(1, emb_len, dim)) self.null_cond_hidden = nn.Parameter(torch.randn(1, dim)) self.norm_cond = nn.LayerNorm(dim) self.cond_projection = nn.Linear(cond_feature_dim, dim) self.non_attn_cond_projection = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, dim), nn.SiLU(), nn.Linear(dim, dim), ) # decoder decoderstack = nn.ModuleList([]) for _ in range(num_layers): decoderstack.append( FiLMTransformerDecoderLayer( dim, num_heads, dim_feedforward=ff_size, dropout=dropout, activation=activation, batch_first=True, rotary=self.rotary, ) ) self.seqTransDecoder = DecoderLayerStack(decoderstack) self.final_layer = nn.Linear(dim, tokens) def _build_single_audio_conv(self, c: int) -> List[nn.Module]: return [ torch.nn.Conv1d(c, max(256, c), kernel_size=3, dilation=1), torch.nn.LeakyReLU(negative_slope=0.2), torch.nn.Dropout(0.2), # torch.nn.Conv1d(max(256, c), max(256, c), kernel_size=3, dilation=2), torch.nn.LeakyReLU(negative_slope=0.2), torch.nn.Dropout(0.2), # torch.nn.Conv1d(max(128, c), max(128, c), kernel_size=3, dilation=3), torch.nn.LeakyReLU(negative_slope=0.2), torch.nn.Dropout(0.2), # torch.nn.Conv1d(max(128, c), c, kernel_size=3, dilation=1), torch.nn.LeakyReLU(negative_slope=0.2), torch.nn.Dropout(0.2), # torch.nn.Conv1d(c, c, kernel_size=3, dilation=2), torch.nn.LeakyReLU(negative_slope=0.2), torch.nn.Dropout(0.2), # torch.nn.Conv1d(c, c, kernel_size=3, dilation=3), torch.nn.LeakyReLU(negative_slope=0.2), torch.nn.Dropout(0.2), ] def setup_audio_models(self, cond_feature_dim: int, num_audio_layers: int) -> None: pre_layers = [] for _ in range(num_audio_layers): pre_layers += self._build_single_audio_conv(cond_feature_dim) pre_layers += [ torch.nn.Conv1d(cond_feature_dim, cond_feature_dim, kernel_size=1) ] pre_layers = torch.nn.ModuleList(pre_layers) self.pre_audio = nn.Sequential(*pre_layers) self.audio_model, self.audio_resampler = setup_lip_regressor() def encode_audio(self, raw_audio: torch.Tensor) -> torch.Tensor: device = next(self.parameters()).device a0 = self.audio_resampler(raw_audio[:, :, 0].to(device)) # B x T a1 = self.audio_resampler(raw_audio[:, :, 1].to(device)) # B x T with torch.no_grad(): z0 = self.audio_model.feature_extractor(a0) z1 = self.audio_model.feature_extractor(a1) emb = torch.cat((z0, z1), axis=1).permute(0, 2, 1) return emb def get_tgt_mask(self, size: int, device: str) -> torch.tensor: mask = torch.tril( torch.ones((size, size), device=device) == 1 ) # Lower triangular matrix mask = mask.float() mask = mask.masked_fill(mask == 0, float("-inf")) # Convert zeros to -inf mask = mask.masked_fill(mask == 1, float(0.0)) # Convert ones to 0 return mask def forward( self, tokens: th.Tensor, condition: th.Tensor, cond_drop_prob: float = 0.0 ) -> torch.Tensor: batch_size, device = tokens.shape[0], tokens.device x = self.token_embedding(tokens) x = self.abs_pos_encoding(x) tgt_mask = self.get_tgt_mask(x.shape[1], x.device) cond_embed = self.encode_audio(condition) keep_mask = prob_mask_like((batch_size,), 1 - cond_drop_prob, device=device) keep_mask_embed = rearrange(keep_mask, "b -> b 1 1") keep_mask_hidden = rearrange(keep_mask, "b -> b 1") cond_tokens = self.pre_audio(cond_embed.permute(0, 2, 1)).permute(0, 2, 1) # cond_tokens = self.cond_projection(cond_tokens) cond_tokens = self.abs_pos_encoding(cond_tokens) null_cond_embed = self.null_cond_embed.to(cond_tokens.dtype) cond_tokens = torch.where( keep_mask_embed, cond_tokens, null_cond_embed[:, : cond_tokens.shape[1], :] ) mean_pooled_cond_tokens = cond_tokens.mean(dim=-2) cond_hidden = self.non_attn_cond_projection(mean_pooled_cond_tokens) # FiLM conditioning null_cond_hidden = self.null_cond_hidden.to(cond_tokens.dtype) cond_hidden = torch.where(keep_mask_hidden, cond_hidden, null_cond_hidden) cond_tokens = self.norm_cond(cond_tokens) output = self.seqTransDecoder(x, cond_tokens, cond_hidden, tgt_mask=tgt_mask) output = self.final_layer(output) return output def generate( self, condition: th.Tensor, sequence_length: int, layers: int, n_sequences: int = 1, max_key_len: int = 8, max_seq_len: int = 240, top_p: float = 0.94, ) -> torch.Tensor: """ :param sequence_length: number of tokens to generate in autoregressive fashion :param n_sequences: number of sequences to generate simultaneously :param temperature: temerature of the softmax for sampling from the output logits :return n_sequences x sequence_length LongTensor containing generated tokens """ assert max_key_len == int(max_seq_len / 30), "currently only running for 1fps" max_key_len *= layers with th.no_grad(): input_tokens = ( th.zeros(n_sequences, 1, dtype=th.int64).to(condition.device) + self.tokens ) for _ in range(sequence_length * layers): curr_input_tokens = input_tokens curr_condition = condition logits = self.forward(curr_input_tokens, curr_condition) logits = logits[:, -1, :] # only most recent time step is relevant one_hot = th.nn.functional.softmax(logits, dim=-1) sorted_probs, indices = torch.sort(one_hot, dim=-1, descending=True) cumulative_probs = torch.cumsum(sorted_probs, dim=-1) nucleus = cumulative_probs < top_p nucleus = torch.cat( [ nucleus.new_ones(nucleus.shape[:-1] + (1,)), nucleus[..., :-1], ], dim=-1, ) sorted_probs[~nucleus] = 0 sorted_probs /= sorted_probs.sum(-1, keepdim=True) dist = Categorical(sorted_probs) idx = dist.sample() tokens = indices.gather(-1, idx.unsqueeze(-1)) input_tokens = th.cat([input_tokens, tokens], dim=-1) # return generated tokens except for sequence start token tokens = input_tokens[:, 1:].contiguous() return tokens