Spaces:
Runtime error
Runtime error
File size: 8,944 Bytes
66b7c56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
from typing import Callable, List
import torch
import torch as th
import torch.nn as nn
from einops import rearrange
from model.modules.rotary_embedding_torch import RotaryEmbedding
from model.modules.transformer_modules import (
DecoderLayerStack,
FiLMTransformerDecoderLayer,
PositionalEncoding,
)
from model.utils import prob_mask_like, setup_lip_regressor
from torch.distributions import Categorical
from torch.nn import functional as F
class GuideTransformer(nn.Module):
def __init__(
self,
tokens: int,
num_heads: int = 4,
num_layers: int = 4,
dim: int = 512,
ff_size: int = 1024,
dropout: float = 0.1,
activation: Callable = F.gelu,
use_rotary: bool = True,
cond_feature_dim: int = 1024,
emb_len: int = 798,
num_audio_layers: int = 2,
):
super().__init__()
self.tokens = tokens
self.token_embedding = th.nn.Embedding(
num_embeddings=tokens + 1, # account for sequence start and end tokens
embedding_dim=dim,
)
self.abs_pos_encoding = nn.Identity()
# if rotary, replace absolute embedding with a rotary embedding instance (absolute becomes an identity)
if use_rotary:
self.rotary = RotaryEmbedding(dim=dim)
else:
self.abs_pos_encoding = PositionalEncoding(dim, dropout, batch_first=True)
self.setup_audio_models(cond_feature_dim, num_audio_layers)
self.null_cond_embed = nn.Parameter(torch.randn(1, emb_len, dim))
self.null_cond_hidden = nn.Parameter(torch.randn(1, dim))
self.norm_cond = nn.LayerNorm(dim)
self.cond_projection = nn.Linear(cond_feature_dim, dim)
self.non_attn_cond_projection = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim),
nn.SiLU(),
nn.Linear(dim, dim),
)
# decoder
decoderstack = nn.ModuleList([])
for _ in range(num_layers):
decoderstack.append(
FiLMTransformerDecoderLayer(
dim,
num_heads,
dim_feedforward=ff_size,
dropout=dropout,
activation=activation,
batch_first=True,
rotary=self.rotary,
)
)
self.seqTransDecoder = DecoderLayerStack(decoderstack)
self.final_layer = nn.Linear(dim, tokens)
def _build_single_audio_conv(self, c: int) -> List[nn.Module]:
return [
torch.nn.Conv1d(c, max(256, c), kernel_size=3, dilation=1),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(max(256, c), max(256, c), kernel_size=3, dilation=2),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(max(128, c), max(128, c), kernel_size=3, dilation=3),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(max(128, c), c, kernel_size=3, dilation=1),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(c, c, kernel_size=3, dilation=2),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
#
torch.nn.Conv1d(c, c, kernel_size=3, dilation=3),
torch.nn.LeakyReLU(negative_slope=0.2),
torch.nn.Dropout(0.2),
]
def setup_audio_models(self, cond_feature_dim: int, num_audio_layers: int) -> None:
pre_layers = []
for _ in range(num_audio_layers):
pre_layers += self._build_single_audio_conv(cond_feature_dim)
pre_layers += [
torch.nn.Conv1d(cond_feature_dim, cond_feature_dim, kernel_size=1)
]
pre_layers = torch.nn.ModuleList(pre_layers)
self.pre_audio = nn.Sequential(*pre_layers)
self.audio_model, self.audio_resampler = setup_lip_regressor()
def encode_audio(self, raw_audio: torch.Tensor) -> torch.Tensor:
device = next(self.parameters()).device
a0 = self.audio_resampler(raw_audio[:, :, 0].to(device)) # B x T
a1 = self.audio_resampler(raw_audio[:, :, 1].to(device)) # B x T
with torch.no_grad():
z0 = self.audio_model.feature_extractor(a0)
z1 = self.audio_model.feature_extractor(a1)
emb = torch.cat((z0, z1), axis=1).permute(0, 2, 1)
return emb
def get_tgt_mask(self, size: int, device: str) -> torch.tensor:
mask = torch.tril(
torch.ones((size, size), device=device) == 1
) # Lower triangular matrix
mask = mask.float()
mask = mask.masked_fill(mask == 0, float("-inf")) # Convert zeros to -inf
mask = mask.masked_fill(mask == 1, float(0.0)) # Convert ones to 0
return mask
def forward(
self, tokens: th.Tensor, condition: th.Tensor, cond_drop_prob: float = 0.0
) -> torch.Tensor:
batch_size, device = tokens.shape[0], tokens.device
x = self.token_embedding(tokens)
x = self.abs_pos_encoding(x)
tgt_mask = self.get_tgt_mask(x.shape[1], x.device)
cond_embed = self.encode_audio(condition)
keep_mask = prob_mask_like((batch_size,), 1 - cond_drop_prob, device=device)
keep_mask_embed = rearrange(keep_mask, "b -> b 1 1")
keep_mask_hidden = rearrange(keep_mask, "b -> b 1")
cond_tokens = self.pre_audio(cond_embed.permute(0, 2, 1)).permute(0, 2, 1)
#
cond_tokens = self.cond_projection(cond_tokens)
cond_tokens = self.abs_pos_encoding(cond_tokens)
null_cond_embed = self.null_cond_embed.to(cond_tokens.dtype)
cond_tokens = torch.where(
keep_mask_embed, cond_tokens, null_cond_embed[:, : cond_tokens.shape[1], :]
)
mean_pooled_cond_tokens = cond_tokens.mean(dim=-2)
cond_hidden = self.non_attn_cond_projection(mean_pooled_cond_tokens)
# FiLM conditioning
null_cond_hidden = self.null_cond_hidden.to(cond_tokens.dtype)
cond_hidden = torch.where(keep_mask_hidden, cond_hidden, null_cond_hidden)
cond_tokens = self.norm_cond(cond_tokens)
output = self.seqTransDecoder(x, cond_tokens, cond_hidden, tgt_mask=tgt_mask)
output = self.final_layer(output)
return output
def generate(
self,
condition: th.Tensor,
sequence_length: int,
layers: int,
n_sequences: int = 1,
max_key_len: int = 8,
max_seq_len: int = 240,
top_p: float = 0.94,
) -> torch.Tensor:
"""
:param sequence_length: number of tokens to generate in autoregressive fashion
:param n_sequences: number of sequences to generate simultaneously
:param temperature: temerature of the softmax for sampling from the output logits
:return n_sequences x sequence_length LongTensor containing generated tokens
"""
assert max_key_len == int(max_seq_len / 30), "currently only running for 1fps"
max_key_len *= layers
with th.no_grad():
input_tokens = (
th.zeros(n_sequences, 1, dtype=th.int64).to(condition.device)
+ self.tokens
)
for _ in range(sequence_length * layers):
curr_input_tokens = input_tokens
curr_condition = condition
logits = self.forward(curr_input_tokens, curr_condition)
logits = logits[:, -1, :] # only most recent time step is relevant
one_hot = th.nn.functional.softmax(logits, dim=-1)
sorted_probs, indices = torch.sort(one_hot, dim=-1, descending=True)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
nucleus = cumulative_probs < top_p
nucleus = torch.cat(
[
nucleus.new_ones(nucleus.shape[:-1] + (1,)),
nucleus[..., :-1],
],
dim=-1,
)
sorted_probs[~nucleus] = 0
sorted_probs /= sorted_probs.sum(-1, keepdim=True)
dist = Categorical(sorted_probs)
idx = dist.sample()
tokens = indices.gather(-1, idx.unsqueeze(-1))
input_tokens = th.cat([input_tokens, tokens], dim=-1)
# return generated tokens except for sequence start token
tokens = input_tokens[:, 1:].contiguous()
return tokens
|