File size: 8,944 Bytes
66b7c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

from typing import Callable, List

import torch
import torch as th
import torch.nn as nn
from einops import rearrange
from model.modules.rotary_embedding_torch import RotaryEmbedding

from model.modules.transformer_modules import (
    DecoderLayerStack,
    FiLMTransformerDecoderLayer,
    PositionalEncoding,
)
from model.utils import prob_mask_like, setup_lip_regressor
from torch.distributions import Categorical
from torch.nn import functional as F


class GuideTransformer(nn.Module):
    def __init__(
        self,
        tokens: int,
        num_heads: int = 4,
        num_layers: int = 4,
        dim: int = 512,
        ff_size: int = 1024,
        dropout: float = 0.1,
        activation: Callable = F.gelu,
        use_rotary: bool = True,
        cond_feature_dim: int = 1024,
        emb_len: int = 798,
        num_audio_layers: int = 2,
    ):
        super().__init__()
        self.tokens = tokens
        self.token_embedding = th.nn.Embedding(
            num_embeddings=tokens + 1,  # account for sequence start and end tokens
            embedding_dim=dim,
        )
        self.abs_pos_encoding = nn.Identity()
        # if rotary, replace absolute embedding with a rotary embedding instance (absolute becomes an identity)
        if use_rotary:
            self.rotary = RotaryEmbedding(dim=dim)
        else:
            self.abs_pos_encoding = PositionalEncoding(dim, dropout, batch_first=True)
        self.setup_audio_models(cond_feature_dim, num_audio_layers)

        self.null_cond_embed = nn.Parameter(torch.randn(1, emb_len, dim))
        self.null_cond_hidden = nn.Parameter(torch.randn(1, dim))
        self.norm_cond = nn.LayerNorm(dim)

        self.cond_projection = nn.Linear(cond_feature_dim, dim)
        self.non_attn_cond_projection = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, dim),
            nn.SiLU(),
            nn.Linear(dim, dim),
        )
        # decoder
        decoderstack = nn.ModuleList([])
        for _ in range(num_layers):
            decoderstack.append(
                FiLMTransformerDecoderLayer(
                    dim,
                    num_heads,
                    dim_feedforward=ff_size,
                    dropout=dropout,
                    activation=activation,
                    batch_first=True,
                    rotary=self.rotary,
                )
            )
        self.seqTransDecoder = DecoderLayerStack(decoderstack)
        self.final_layer = nn.Linear(dim, tokens)

    def _build_single_audio_conv(self, c: int) -> List[nn.Module]:
        return [
            torch.nn.Conv1d(c, max(256, c), kernel_size=3, dilation=1),
            torch.nn.LeakyReLU(negative_slope=0.2),
            torch.nn.Dropout(0.2),
            #
            torch.nn.Conv1d(max(256, c), max(256, c), kernel_size=3, dilation=2),
            torch.nn.LeakyReLU(negative_slope=0.2),
            torch.nn.Dropout(0.2),
            #
            torch.nn.Conv1d(max(128, c), max(128, c), kernel_size=3, dilation=3),
            torch.nn.LeakyReLU(negative_slope=0.2),
            torch.nn.Dropout(0.2),
            #
            torch.nn.Conv1d(max(128, c), c, kernel_size=3, dilation=1),
            torch.nn.LeakyReLU(negative_slope=0.2),
            torch.nn.Dropout(0.2),
            #
            torch.nn.Conv1d(c, c, kernel_size=3, dilation=2),
            torch.nn.LeakyReLU(negative_slope=0.2),
            torch.nn.Dropout(0.2),
            #
            torch.nn.Conv1d(c, c, kernel_size=3, dilation=3),
            torch.nn.LeakyReLU(negative_slope=0.2),
            torch.nn.Dropout(0.2),
        ]

    def setup_audio_models(self, cond_feature_dim: int, num_audio_layers: int) -> None:
        pre_layers = []
        for _ in range(num_audio_layers):
            pre_layers += self._build_single_audio_conv(cond_feature_dim)
        pre_layers += [
            torch.nn.Conv1d(cond_feature_dim, cond_feature_dim, kernel_size=1)
        ]
        pre_layers = torch.nn.ModuleList(pre_layers)
        self.pre_audio = nn.Sequential(*pre_layers)
        self.audio_model, self.audio_resampler = setup_lip_regressor()

    def encode_audio(self, raw_audio: torch.Tensor) -> torch.Tensor:
        device = next(self.parameters()).device
        a0 = self.audio_resampler(raw_audio[:, :, 0].to(device))  # B x T
        a1 = self.audio_resampler(raw_audio[:, :, 1].to(device))  # B x T
        with torch.no_grad():
            z0 = self.audio_model.feature_extractor(a0)
            z1 = self.audio_model.feature_extractor(a1)
            emb = torch.cat((z0, z1), axis=1).permute(0, 2, 1)
        return emb

    def get_tgt_mask(self, size: int, device: str) -> torch.tensor:
        mask = torch.tril(
            torch.ones((size, size), device=device) == 1
        )  # Lower triangular matrix
        mask = mask.float()
        mask = mask.masked_fill(mask == 0, float("-inf"))  # Convert zeros to -inf
        mask = mask.masked_fill(mask == 1, float(0.0))  # Convert ones to 0
        return mask

    def forward(
        self, tokens: th.Tensor, condition: th.Tensor, cond_drop_prob: float = 0.0
    ) -> torch.Tensor:
        batch_size, device = tokens.shape[0], tokens.device

        x = self.token_embedding(tokens)
        x = self.abs_pos_encoding(x)
        tgt_mask = self.get_tgt_mask(x.shape[1], x.device)

        cond_embed = self.encode_audio(condition)
        keep_mask = prob_mask_like((batch_size,), 1 - cond_drop_prob, device=device)
        keep_mask_embed = rearrange(keep_mask, "b -> b 1 1")
        keep_mask_hidden = rearrange(keep_mask, "b -> b 1")
        cond_tokens = self.pre_audio(cond_embed.permute(0, 2, 1)).permute(0, 2, 1)
        #
        cond_tokens = self.cond_projection(cond_tokens)
        cond_tokens = self.abs_pos_encoding(cond_tokens)

        null_cond_embed = self.null_cond_embed.to(cond_tokens.dtype)
        cond_tokens = torch.where(
            keep_mask_embed, cond_tokens, null_cond_embed[:, : cond_tokens.shape[1], :]
        )
        mean_pooled_cond_tokens = cond_tokens.mean(dim=-2)
        cond_hidden = self.non_attn_cond_projection(mean_pooled_cond_tokens)

        # FiLM conditioning
        null_cond_hidden = self.null_cond_hidden.to(cond_tokens.dtype)
        cond_hidden = torch.where(keep_mask_hidden, cond_hidden, null_cond_hidden)
        cond_tokens = self.norm_cond(cond_tokens)

        output = self.seqTransDecoder(x, cond_tokens, cond_hidden, tgt_mask=tgt_mask)
        output = self.final_layer(output)
        return output

    def generate(
        self,
        condition: th.Tensor,
        sequence_length: int,
        layers: int,
        n_sequences: int = 1,
        max_key_len: int = 8,
        max_seq_len: int = 240,
        top_p: float = 0.94,
    ) -> torch.Tensor:
        """
        :param sequence_length: number of tokens to generate in autoregressive fashion
        :param n_sequences: number of sequences to generate simultaneously
        :param temperature: temerature of the softmax for sampling from the output logits
        :return n_sequences x sequence_length LongTensor containing generated tokens
        """
        assert max_key_len == int(max_seq_len / 30), "currently only running for 1fps"
        max_key_len *= layers
        with th.no_grad():
            input_tokens = (
                th.zeros(n_sequences, 1, dtype=th.int64).to(condition.device)
                + self.tokens
            )
            for _ in range(sequence_length * layers):
                curr_input_tokens = input_tokens
                curr_condition = condition
                logits = self.forward(curr_input_tokens, curr_condition)
                logits = logits[:, -1, :]  # only most recent time step is relevant
                one_hot = th.nn.functional.softmax(logits, dim=-1)
                sorted_probs, indices = torch.sort(one_hot, dim=-1, descending=True)
                cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
                nucleus = cumulative_probs < top_p
                nucleus = torch.cat(
                    [
                        nucleus.new_ones(nucleus.shape[:-1] + (1,)),
                        nucleus[..., :-1],
                    ],
                    dim=-1,
                )
                sorted_probs[~nucleus] = 0
                sorted_probs /= sorted_probs.sum(-1, keepdim=True)
                dist = Categorical(sorted_probs)
                idx = dist.sample()
                tokens = indices.gather(-1, idx.unsqueeze(-1))
                input_tokens = th.cat([input_tokens, tokens], dim=-1)

            # return generated tokens except for sequence start token
            tokens = input_tokens[:, 1:].contiguous()
            return tokens