vpi / gpt_helper.py
joonh-robotics's picture
update interactive gradio demo
7f60754 verified
raw
history blame
20.7 kB
#%%
import math
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
import urllib.request
from PIL import Image
import io
import re
import copy
import os
import cv2
import base64
from io import BytesIO
import requests
import openai
from tenacity import retry, stop_after_attempt, wait_fixed
from IPython.display import Markdown,display
from rich.console import Console
import json
import os
import sys
#%%
def visualize_subplots(images, cols=3):
"""
Visualize a list of images.
Parameters:
images (list): List of images. Each image can be a path to an image file or a numpy array.
cols (int): Number of columns in the image grid.
"""
imgs_to_show = []
# Load images if they are paths, or directly use them if they are numpy arrays
for img in images:
if isinstance(img, str): # Assuming it's a file path
img_data = plt.imread(img)
elif isinstance(img, np.ndarray): # Assuming it's a numpy array
img_data = img
else:
raise ValueError("Images should be either file paths or numpy arrays.")
imgs_to_show.append(img_data)
N = len(imgs_to_show)
if N == 0:
print("No images to display.")
return
rows = int(math.ceil(N / cols))
gs = gridspec.GridSpec(rows, cols)
fig = plt.figure(figsize=(cols * 4, rows * 4))
for n in range(N):
ax = fig.add_subplot(gs[n])
ax.imshow(imgs_to_show[n])
ax.set_title(f"Image {n + 1}")
ax.axis('off')
fig.tight_layout()
plt.show()
def set_openai_api_key_from_txt(key_path='./key.txt',VERBOSE=True):
"""
Set OpenAI API Key from a txt file
"""
with open(key_path, 'r') as f:
OPENAI_API_KEY = f.read()
openai.api_key = OPENAI_API_KEY
if VERBOSE:
print ("OpenAI API Key Ready from [%s]."%(key_path))
#%%
class GPT4VisionClass:
def __init__(
self,
gpt_model: str = "gpt-4-vision-preview",
role_msg: str = "You are a helpful agent with vision capabilities; do not respond to objects not depicted in images.",
# key_path='../key/rilab_key.txt',
key=None,
max_tokens = 512, temperature = 0.9, n = 1, stop = [], VERBOSE=True,
image_max_size:int = 512,
):
self.gpt_model = gpt_model
self.role_msg = role_msg
self.messages = [{"role": "system", "content": f"{role_msg}"}]
self.init_messages = [{"role": "system", "content": f"{role_msg}"}]
self.history = [{"role": "system", "content": f"{role_msg}"}]
self.image_max_size = image_max_size
# GPT-4 parameters
self.max_tokens = max_tokens
self.temperature = temperature
self.n = n
self.stop = stop
self.VERBOSE = VERBOSE
if self.VERBOSE:
self.console = Console()
self.response = None
self.image_token_count = 0
self._setup_client_with_key(key)
# self._setup_client(key_path)
def _setup_client_with_key(self, key):
if self.VERBOSE:
self.console.print(f"[bold cyan]api key:[%s][/bold cyan]" % (key))
OPENAI_API_KEY = key
self.client = openai.OpenAI(api_key=OPENAI_API_KEY)
if self.VERBOSE:
self.console.print(
"[bold cyan]Chat agent using [%s] initialized with the follow role:[%s][/bold cyan]"
% (self.gpt_model, self.role_msg)
)
def _setup_client(self, key_path):
if self.VERBOSE:
self.console.print(f"[bold cyan]key_path:[%s][/bold cyan]" % (key_path))
with open(key_path, "r") as f:
OPENAI_API_KEY = f.read()
self.client = openai.OpenAI(api_key=OPENAI_API_KEY)
if self.VERBOSE:
self.console.print(
"[bold cyan]Chat agent using [%s] initialized with the follow role:[%s][/bold cyan]"
% (self.gpt_model, self.role_msg)
)
def _backup_chat(self):
self.init_messages = copy.copy(self.messages)
def _get_response_content(self):
if self.response:
return self.response.choices[0].message.content
else:
return None
def _get_response_status(self):
if self.response:
return self.response.choices[0].message.finish_reason
else:
return None
def _encode_image_path(self, image_path):
# with open(image_path, "rb") as image_file:
image_pil = Image.open(image_path)
image_pil.thumbnail(
(self.image_max_size, self.image_max_size)
)
image_pil_rgb = image_pil.convert("RGB")
# change pil to base64 string
img_buf = io.BytesIO()
image_pil_rgb.save(img_buf, format="PNG")
return base64.b64encode(img_buf.getvalue()).decode('utf-8')
def _encode_image(self, image):
"""
Save the image to a temporary file and encode it to base64
"""
# save Image:PIL to temp file
cv2.imwrite("temp.jpg", np.array(image))
with open("temp.jpg", "rb") as image_file:
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
os.remove("temp.jpg")
return encoded_image
def _count_image_tokens(self, width, height):
h = ceil(height / 512)
w = ceil(width / 512)
n = w * h
total = 85 + 170 * n
return total
def set_common_prompt(self, common_prompt):
self.messages.append({"role": "system", "content": common_prompt})
# @retry(stop=stop_after_attempt(10), wait=wait_fixed(5))
def chat(
self,
query_text,
image_paths=[], images=None, APPEND=True,
PRINT_USER_MSG=True,
PRINT_GPT_OUTPUT=True,
RESET_CHAT=False,
RETURN_RESPONSE=True,
MAX_TOKENS = 512,
VISUALIZE = False,
DETAIL = "auto",
CROP = None,
):
"""
image_paths: list of image paths
images: list of images
You can only provide either image_paths or image.
"""
if DETAIL:
self.console.print(f"[bold cyan]DETAIL:[/bold cyan] {DETAIL}")
self.detail = DETAIL
content = [{"type": "text", "text": query_text}]
content_image_not_encoded = [{"type": "text", "text": query_text}]
# Prepare the history temp
if image_paths is not None:
local_imgs = []
for image_path_idx, image_path in enumerate(image_paths):
with Image.open(image_path) as img:
width, height = img.size
if CROP:
img = img.crop(CROP)
width, height = img.size
# convert PIL to numpy array
local_imgs.append(np.array(img))
self.image_token_count += self._count_image_tokens(width, height)
print(f"[{image_path_idx}/{len(image_paths)}] image_path: {image_path}")
base64_image = self._encode_image_path(image_path)
image_content = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": self.detail
}
}
image_content_in_numpy_array = {
"type": "image_numpy",
"image": np.array(Image.open(image_path))
}
content.append(image_content)
content_image_not_encoded.append(image_content_in_numpy_array)
elif images is not None:
local_imgs = []
for image_idx, image in enumerate(images):
image_pil = Image.fromarray(image)
if CROP:
image_pil = image_pil.crop(CROP)
local_imgs.append(image_pil)
# width, height = image_pil.size
image_pil.thumbnail(
(self.image_max_size, self.image_max_size)
)
width, height = image_pil.size
self.image_token_count += self._count_image_tokens(width, height)
self.console.print(f"[deep_sky_blue3][{image_idx+1}/{len(images)}] Image provided: [Original]: {image.shape}, [Downsize]: {image_pil.size}[/deep_sky_blue3]")
base64_image = self._encode_image(image_pil)
image_content = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": self.detail
}
}
image_content_in_numpy_array = {
"type": "image_numpy",
"image": image
}
content.append(image_content)
content_image_not_encoded.append(image_content_in_numpy_array)
else:
self.console.print("[bold red]Neither image_paths nor images are provided.[/bold red]")
if VISUALIZE:
if image_paths:
self.console.print("[deep_sky_blue3][VISUALIZE][/deep_sky_blue3]")
if CROP:
visualize_subplots(local_imgs)
else:
visualize_subplots(image_paths)
elif images:
self.console.print("[deep_sky_blue3][VISUALIZE][/deep_sky_blue3]")
if CROP:
local_imgs = np.array(local_imgs)
visualize_subplots(local_imgs)
else:
visualize_subplots(images)
self.messages.append({"role": "user", "content": content})
self.history.append({"role": "user", "content": content_image_not_encoded})
payload = self.create_payload(model=self.gpt_model)
self.response = self.client.chat.completions.create(**payload)
if PRINT_USER_MSG:
self.console.print("[deep_sky_blue3][USER_MSG][/deep_sky_blue3]")
print(query_text)
if PRINT_GPT_OUTPUT:
self.console.print("[spring_green4][GPT_OUTPUT][/spring_green4]")
print(self._get_response_content())
# Reset
if RESET_CHAT:
self.messages = self.init_messages
# Return
if RETURN_RESPONSE:
return self._get_response_content()
@retry(stop=stop_after_attempt(10), wait=wait_fixed(5))
def chat_multiple_images(self, image_paths, query_text, model="gpt-4-vision-preview", max_tokens=300):
messages = [
{
"role": "user",
"content": [{"type": "text", "text": query_text}]
}
]
for image_path in image_paths:
base64_image = self._encode_image(image_path)
messages[0]["content"].append(
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
)
response = self.client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens
)
return response
@retry(stop=stop_after_attempt(10), wait=wait_fixed(5))
def generate_image(self, prompt, size="1024x1024", quality="standard", n=1):
response = self.client.images.generate(
model="dall-e-3",
prompt=prompt,
size=size,
quality=quality,
n=n
)
return response
def visualize_image(self, image_response):
image_url = image_response.data[0].url
# Open the URL and convert the image to a NumPy array
with urllib.request.urlopen(image_url) as url:
img = Image.open(url)
img_array = np.array(img)
plt.imshow(img_array)
plt.axis('off')
plt.show()
def create_payload(self,model):
payload = {
"model": model,
"messages": self.messages,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"n": self.n
}
if len(self.stop) > 0:
payload["stop"] = self.stop
return payload
def save_interaction(self, data, file_path: str = "./scripts/interaction_history.json"):
"""
Save the chat history to a JSON file.
The history includes the user role, content, and images stored as NumPy arrays.
"""
self.history = data.copy()
history_to_save = []
for entry in self.history:
entry_to_save = {
"role": entry["role"],
"content": []
}
# Check if 'content' is a string or a list
if isinstance(entry["content"], str):
entry_to_save["content"].append({"type": "text", "text": entry["content"]})
elif isinstance(entry["content"], list):
for content in entry["content"]:
if content["type"] == "text":
entry_to_save["content"].append(content)
elif content["type"] == "image_numpy":
entry_to_save["content"].append({"type": "image_numpy", "image": content["image"].tolist()})
elif content["type"] == "image_url":
entry_to_save["content"].append(content)
history_to_save.append(entry_to_save)
with open(file_path, "w") as file:
json.dump(history_to_save, file, indent=4)
if self.VERBOSE:
self.console.print(f"[bold green]Chat history saved to {file_path}[/bold green]")
def get_total_token(self):
"""
Get total token used
"""
if self.VERBOSE:
self.console.print(f"[bold cyan]Total token used: {self.response.usage.total_tokens}[/bold cyan]")
return self.response.usage.total_tokens
def get_image_token(self):
"""
Get image token used
"""
if self.VERBOSE:
self.console.print(f"[bold cyan]Image token used: {self.image_token_count}[/bold cyan]")
return self.image_token_count
def reset_tokens(self):
"""
Reset total and image token used
"""
self.response.usage.total_tokens = 0
self.image_token_count = 0
if self.VERBOSE:
self.console.print(f"[bold cyan]Image token reset[/bold cyan]")
from math import ceil
def count_image_tokens(width: int, height: int):
h = ceil(height / 512)
w = ceil(width / 512)
n = w * h
total = 85 + 170 * n
return total
def printmd(string):
display(Markdown(string))
def extract_quoted_words(string):
quoted_words = re.findall(r'"([^"]*)"', string)
return quoted_words
def response_to_json(response):
# Remove the markdown code block formatting
response_strip = response.strip('```json\n').rstrip('```')
# Convert the cleaned string to a JSON object
try:
response_json = json.loads(response_strip)
except json.JSONDecodeError as e:
response_json = None
error_message = str(e)
return response_json, error_message if response_json is None else ""
def match_objects(response_object_names, original_object_names, type_conversion):
matched_objects = []
for res_obj_name in response_object_names:
components = res_obj_name.split('_')
converted_components = set()
# Applying type conversion and creating a unique set of components
for comp in components:
converted_comp = type_conversion.get(comp, comp)
converted_components.add(converted_comp)
# Check if the unique set of converted components is in any of the original object names
for original in original_object_names:
if all(converted_comp in original for converted_comp in converted_components):
matched_objects.append(original)
break
else:
print(f"No match found for {res_obj_name}")
print(f"Type manually in the set of {original_object_names}:")
matched_objects.append(input())
return matched_objects
def parse_and_get_action(response_json, option_idx, original_objects, type_conversion):
func_call_list = []
action = response_json["options"][option_idx-1]["action"]
# Splitting actions correctly if there are multiple actions
if isinstance(action, str):
actions = [act.strip() + ')' for act in action.split('),') if act.strip()]
elif isinstance(action, list):
actions = action
else:
raise ValueError("Action must be a string or a list of strings")
for act in actions:
# Handle special cases; none-action / done-action
if act in ["move_object(None, None)", "set_done()"]:
func_call_list.append(f"{act}")
continue
# Regular action processing
func_name, args = act.split('(', 1)
args = args.rstrip(')')
args_list = args.split(', ')
new_args = []
for arg in args_list:
arg_parts = arg.split('_')
# Applying type conversion to each part of arg
converted_arg_parts = [type_conversion.get(part, part) for part in arg_parts]
matched_name = match_objects(["_".join(converted_arg_parts)], original_objects, type_conversion)
if matched_name:
arg = matched_name[0]
new_args.append(f'"{arg}"')
func_call = f"{func_name}({', '.join(new_args)})"
func_call_list.append(func_call)
return func_call_list
def parse_actions_to_executable_strings(response_json, option_idx, env):
actions = response_json["options"][option_idx - 1]["actions"]
executable_strings = []
stored_results = {}
for action in actions:
function_name = action["function"]
arguments = action["arguments"]
# Preparing the arguments for the function call
prepared_args = []
for arg in arguments:
if arg == "None": # Handling the case where the argument is "None"
prepared_args.append(None)
elif arg in stored_results:
# Use the variable name directly
prepared_args.append(stored_results[arg])
else:
# Format the argument as a string or use as is
prepared_arg = f'"{arg}"' if isinstance(arg, str) else arg
prepared_args.append(prepared_arg)
# Format the executable string
if "store_result_as" in action:
result_var = action["store_result_as"]
exec_str = f'{result_var} = env.{function_name}({", ".join(map(str, prepared_args))})'
stored_results[result_var] = result_var # Store the variable name for later use
else:
exec_str = f'env.{function_name}({", ".join(map(str, prepared_args))})'
executable_strings.append(exec_str)
return executable_strings
def extract_arguments(response_json):
# Regular expression pattern to extract arguments from action
pattern = r'move_object\(([^)]+)\)'
# List to hold extracted arguments
extracted_arguments = []
# Iterate over each option in response_json
for option in response_json.get("options", []):
action = option.get("action", "")
match = re.search(pattern, action)
if match:
# Extract the content inside parentheses and split by comma
arguments = match.group(1)
args = [arg.strip() for arg in arguments.split(',')]
extracted_arguments.append(args)
return extracted_arguments
def decode_image(base64_image_string):
"""
Decodes a Base64 encoded image string and returns it as a NumPy array.
Parameters:
base64_image_string (str): A Base64 encoded image string.
Returns:
numpy.ndarray: A NumPy array representing the image if successful, None otherwise.
"""
# Remove Data URI scheme if present
if "," in base64_image_string:
base64_image_string = base64_image_string.split(',')[1]
try:
image_data = base64.b64decode(base64_image_string)
image = Image.open(BytesIO(image_data))
return np.array(image)
except Exception as e:
print(f"An error occurred: {e}")
return None