File size: 20,728 Bytes
7f60754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
#%%
import math
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
import urllib.request
from PIL import Image
import io
import re
import copy
import os
import cv2
import base64
from io import BytesIO
import requests
import openai
from tenacity import retry, stop_after_attempt, wait_fixed
from IPython.display import Markdown,display
from rich.console import Console
import json
import os
import sys

#%%
def visualize_subplots(images, cols=3):
    """
    Visualize a list of images.

    Parameters:
    images (list): List of images. Each image can be a path to an image file or a numpy array.
    cols (int): Number of columns in the image grid.
    """
    imgs_to_show = []

    # Load images if they are paths, or directly use them if they are numpy arrays
    for img in images:
        if isinstance(img, str):  # Assuming it's a file path
            img_data = plt.imread(img)
        elif isinstance(img, np.ndarray):  # Assuming it's a numpy array
            img_data = img
        else:
            raise ValueError("Images should be either file paths or numpy arrays.")
        imgs_to_show.append(img_data)

    N = len(imgs_to_show)
    if N == 0:
        print("No images to display.")
        return

    rows = int(math.ceil(N / cols))
    gs = gridspec.GridSpec(rows, cols)
    fig = plt.figure(figsize=(cols * 4, rows * 4))

    for n in range(N):
        ax = fig.add_subplot(gs[n])
        ax.imshow(imgs_to_show[n])
        ax.set_title(f"Image {n + 1}")
        ax.axis('off')

    fig.tight_layout()
    plt.show()

def set_openai_api_key_from_txt(key_path='./key.txt',VERBOSE=True):
    """
        Set OpenAI API Key from a txt file
    """
    with open(key_path, 'r') as f: 
        OPENAI_API_KEY = f.read()
    openai.api_key = OPENAI_API_KEY
    if VERBOSE:
        print ("OpenAI API Key Ready from [%s]."%(key_path))

#%%
class GPT4VisionClass:
    def __init__(
            self, 
            gpt_model: str = "gpt-4-vision-preview",
            role_msg: str = "You are a helpful agent with vision capabilities; do not respond to objects not depicted in images.",
            # key_path='../key/rilab_key.txt',
            key=None,
            max_tokens = 512, temperature = 0.9, n = 1, stop = [], VERBOSE=True,
            image_max_size:int = 512,
            ):
        self.gpt_model = gpt_model
        self.role_msg = role_msg
        self.messages = [{"role": "system", "content": f"{role_msg}"}]
        self.init_messages = [{"role": "system", "content": f"{role_msg}"}]
        self.history = [{"role": "system", "content": f"{role_msg}"}]
        self.image_max_size = image_max_size

        # GPT-4 parameters
        self.max_tokens = max_tokens
        self.temperature = temperature
        self.n = n
        self.stop = stop
        self.VERBOSE = VERBOSE
        if self.VERBOSE:
            self.console = Console()
        self.response = None
        self.image_token_count = 0

        self._setup_client_with_key(key)
        # self._setup_client(key_path)

    def _setup_client_with_key(self, key):
        if self.VERBOSE:
            self.console.print(f"[bold cyan]api key:[%s][/bold cyan]" % (key))

        OPENAI_API_KEY = key
        self.client = openai.OpenAI(api_key=OPENAI_API_KEY)

        if self.VERBOSE:
            self.console.print(
                "[bold cyan]Chat agent using [%s] initialized with the follow role:[%s][/bold cyan]"
                % (self.gpt_model, self.role_msg)
            )

    def _setup_client(self, key_path):
        if self.VERBOSE:
            self.console.print(f"[bold cyan]key_path:[%s][/bold cyan]" % (key_path))

        with open(key_path, "r") as f:
            OPENAI_API_KEY = f.read()
        self.client = openai.OpenAI(api_key=OPENAI_API_KEY)

        if self.VERBOSE:
            self.console.print(
                "[bold cyan]Chat agent using [%s] initialized with the follow role:[%s][/bold cyan]"
                % (self.gpt_model, self.role_msg)
            )
    
    def _backup_chat(self):
        self.init_messages = copy.copy(self.messages)

    def _get_response_content(self):
        if self.response:
            return self.response.choices[0].message.content
        else:
            return None

    def _get_response_status(self):
        if self.response:
            return self.response.choices[0].message.finish_reason
        else:
            return None
        
    def _encode_image_path(self, image_path):
        # with open(image_path, "rb") as image_file:
        image_pil = Image.open(image_path)
        image_pil.thumbnail(
            (self.image_max_size, self.image_max_size)
        )
        image_pil_rgb = image_pil.convert("RGB")
        # change pil to base64 string
        img_buf = io.BytesIO()
        image_pil_rgb.save(img_buf, format="PNG")
        return base64.b64encode(img_buf.getvalue()).decode('utf-8')

    def _encode_image(self, image):
        """
            Save the image to a temporary file and encode it to base64
        """
        # save Image:PIL to temp file
        cv2.imwrite("temp.jpg", np.array(image))
        with open("temp.jpg", "rb") as image_file:
            encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
        os.remove("temp.jpg")
        return encoded_image

    def _count_image_tokens(self, width, height):
        h = ceil(height / 512)
        w = ceil(width / 512)
        n = w * h
        total = 85 + 170 * n
        return total

    def set_common_prompt(self, common_prompt):
        self.messages.append({"role": "system", "content": common_prompt})

    # @retry(stop=stop_after_attempt(10), wait=wait_fixed(5))
    def chat(
            self, 
            query_text, 
            image_paths=[], images=None, APPEND=True,
            PRINT_USER_MSG=True,
            PRINT_GPT_OUTPUT=True,
            RESET_CHAT=False,
            RETURN_RESPONSE=True,
            MAX_TOKENS = 512,
            VISUALIZE = False,
            DETAIL = "auto",
            CROP = None,
            ):
        """
            image_paths: list of image paths
            images: list of images
            You can only provide either image_paths or image.
        """
        if DETAIL:
            self.console.print(f"[bold cyan]DETAIL:[/bold cyan] {DETAIL}")
            self.detail = DETAIL
        content = [{"type": "text", "text": query_text}]
        content_image_not_encoded = [{"type": "text", "text": query_text}]
        # Prepare the history temp
        if image_paths is not None:
            local_imgs = []
            for image_path_idx, image_path in enumerate(image_paths):
                with Image.open(image_path) as img:
                    width, height = img.size
                    if CROP:
                        img = img.crop(CROP)
                        width, height = img.size
                        # convert PIL to numpy array
                        local_imgs.append(np.array(img))
                    self.image_token_count += self._count_image_tokens(width, height)

                print(f"[{image_path_idx}/{len(image_paths)}] image_path: {image_path}")
                base64_image = self._encode_image_path(image_path)
                image_content = {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_image}",
                            "detail": self.detail
                        }
                    }
                image_content_in_numpy_array = {
                        "type": "image_numpy",
                        "image": np.array(Image.open(image_path))
                    }
                content.append(image_content)
                content_image_not_encoded.append(image_content_in_numpy_array)
        elif images is not None:
            local_imgs = []
            for image_idx, image in enumerate(images):
                image_pil = Image.fromarray(image)
                if CROP:
                    image_pil = image_pil.crop(CROP)
                    local_imgs.append(image_pil)
                    # width, height = image_pil.size
                image_pil.thumbnail(
                    (self.image_max_size, self.image_max_size)
                )
                width, height = image_pil.size
                self.image_token_count += self._count_image_tokens(width, height)
                self.console.print(f"[deep_sky_blue3][{image_idx+1}/{len(images)}] Image provided: [Original]: {image.shape}, [Downsize]: {image_pil.size}[/deep_sky_blue3]")
                base64_image = self._encode_image(image_pil)
                image_content = {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_image}",
                            "detail": self.detail
                        }
                    }
                image_content_in_numpy_array = {
                        "type": "image_numpy",
                        "image": image
                    }
                content.append(image_content)
                content_image_not_encoded.append(image_content_in_numpy_array)
        else:
            self.console.print("[bold red]Neither image_paths nor images are provided.[/bold red]")

        if VISUALIZE:
            if image_paths:
                self.console.print("[deep_sky_blue3][VISUALIZE][/deep_sky_blue3]")
                if CROP:
                    visualize_subplots(local_imgs)
                else:
                    visualize_subplots(image_paths)
            elif images:
                self.console.print("[deep_sky_blue3][VISUALIZE][/deep_sky_blue3]")
                if CROP:
                    local_imgs = np.array(local_imgs)
                    visualize_subplots(local_imgs)
                else:
                    visualize_subplots(images)

        self.messages.append({"role": "user", "content": content})
        self.history.append({"role": "user", "content": content_image_not_encoded})
        payload = self.create_payload(model=self.gpt_model)
        self.response = self.client.chat.completions.create(**payload)

        if PRINT_USER_MSG:
            self.console.print("[deep_sky_blue3][USER_MSG][/deep_sky_blue3]")
            print(query_text)
        if PRINT_GPT_OUTPUT:
            self.console.print("[spring_green4][GPT_OUTPUT][/spring_green4]")
            print(self._get_response_content())
        # Reset
        if RESET_CHAT:
            self.messages = self.init_messages
        # Return
        if RETURN_RESPONSE:
            return self._get_response_content()

    @retry(stop=stop_after_attempt(10), wait=wait_fixed(5))
    def chat_multiple_images(self, image_paths, query_text, model="gpt-4-vision-preview", max_tokens=300):
        messages = [
            {
                "role": "user",
                "content": [{"type": "text", "text": query_text}]
            }
        ]
        for image_path in image_paths:
            base64_image = self._encode_image(image_path)
            messages[0]["content"].append(
                {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
            )
        response = self.client.chat.completions.create(
            model=model,
            messages=messages,
            max_tokens=max_tokens
        )
        return response

    @retry(stop=stop_after_attempt(10), wait=wait_fixed(5))
    def generate_image(self, prompt, size="1024x1024", quality="standard", n=1):
        response = self.client.images.generate(
            model="dall-e-3",
            prompt=prompt,
            size=size,
            quality=quality,
            n=n
        )
        return response

    def visualize_image(self, image_response):
        image_url = image_response.data[0].url
        # Open the URL and convert the image to a NumPy array
        with urllib.request.urlopen(image_url) as url:
            img = Image.open(url)
            img_array = np.array(img)

        plt.imshow(img_array)
        plt.axis('off')
        plt.show()

    def create_payload(self,model):
        payload = {
            "model": model,
            "messages": self.messages,
            "max_tokens": self.max_tokens,
            "temperature": self.temperature,
            "n": self.n
        }
        if len(self.stop) > 0:
            payload["stop"] = self.stop
        return payload
    
    def save_interaction(self, data, file_path: str = "./scripts/interaction_history.json"):
        """
        Save the chat history to a JSON file.
        The history includes the user role, content, and images stored as NumPy arrays.
        """
        self.history = data.copy()
        history_to_save = []
        for entry in self.history:
            entry_to_save = {
                "role": entry["role"],
                "content": []
            }
            # Check if 'content' is a string or a list
            if isinstance(entry["content"], str):
                entry_to_save["content"].append({"type": "text", "text": entry["content"]})
            elif isinstance(entry["content"], list):
                for content in entry["content"]:
                    if content["type"] == "text":
                        entry_to_save["content"].append(content)
                    elif content["type"] == "image_numpy":
                        entry_to_save["content"].append({"type": "image_numpy", "image": content["image"].tolist()})
                    elif content["type"] == "image_url":
                        entry_to_save["content"].append(content)
            history_to_save.append(entry_to_save)
        with open(file_path, "w") as file:
            json.dump(history_to_save, file, indent=4)

        if self.VERBOSE:
            self.console.print(f"[bold green]Chat history saved to {file_path}[/bold green]")

    def get_total_token(self):
        """
            Get total token used
        """
        if self.VERBOSE:
            self.console.print(f"[bold cyan]Total token used: {self.response.usage.total_tokens}[/bold cyan]")
        return self.response.usage.total_tokens
    
    def get_image_token(self):
        """
            Get image token used
        """
        if self.VERBOSE:
            self.console.print(f"[bold cyan]Image token used: {self.image_token_count}[/bold cyan]")
        return self.image_token_count

    def reset_tokens(self):
        """
            Reset total and image token used
        """
        self.response.usage.total_tokens = 0
        self.image_token_count = 0
        if self.VERBOSE:
            self.console.print(f"[bold cyan]Image token reset[/bold cyan]")

from math import ceil

def count_image_tokens(width: int, height: int):
    h = ceil(height / 512)
    w = ceil(width / 512)
    n = w * h
    total = 85 + 170 * n
    return total

def printmd(string):
    display(Markdown(string))
    
def extract_quoted_words(string):
    quoted_words = re.findall(r'"([^"]*)"', string)
    return quoted_words

def response_to_json(response):
    # Remove the markdown code block formatting
    response_strip = response.strip('```json\n').rstrip('```')
    # Convert the cleaned string to a JSON object
    try:
        response_json = json.loads(response_strip)
    except json.JSONDecodeError as e:
        response_json = None
        error_message = str(e)

    return response_json, error_message if response_json is None else ""

def match_objects(response_object_names, original_object_names, type_conversion):
    matched_objects = []

    for res_obj_name in response_object_names:
        components = res_obj_name.split('_')
        converted_components = set()

        # Applying type conversion and creating a unique set of components
        for comp in components:
            converted_comp = type_conversion.get(comp, comp)
            converted_components.add(converted_comp)
        # Check if the unique set of converted components is in any of the original object names
        for original in original_object_names:
            if all(converted_comp in original for converted_comp in converted_components):
                matched_objects.append(original)
                break
        else:
            print(f"No match found for {res_obj_name}")
            print(f"Type manually in the set of {original_object_names}:")
            matched_objects.append(input())

    return matched_objects

def parse_and_get_action(response_json, option_idx, original_objects, type_conversion):
    func_call_list = []
    action = response_json["options"][option_idx-1]["action"]

    # Splitting actions correctly if there are multiple actions
    if isinstance(action, str):
        actions = [act.strip() + ')' for act in action.split('),') if act.strip()]
    elif isinstance(action, list):
        actions = action
    else:
        raise ValueError("Action must be a string or a list of strings")

    for act in actions:
        # Handle special cases; none-action / done-action
        if act in ["move_object(None, None)", "set_done()"]:
            func_call_list.append(f"{act}")
            continue

        # Regular action processing
        func_name, args = act.split('(', 1)
        args = args.rstrip(')')
        args_list = args.split(', ')
        new_args = []

        for arg in args_list:
            arg_parts = arg.split('_')
            # Applying type conversion to each part of arg
            converted_arg_parts = [type_conversion.get(part, part) for part in arg_parts]
            matched_name = match_objects(["_".join(converted_arg_parts)], original_objects, type_conversion)
            if matched_name:
                arg = matched_name[0]

            new_args.append(f'"{arg}"')

        func_call = f"{func_name}({', '.join(new_args)})"
        func_call_list.append(func_call)

    return func_call_list

def parse_actions_to_executable_strings(response_json, option_idx, env):
    actions = response_json["options"][option_idx - 1]["actions"]
    executable_strings = []
    stored_results = {}

    for action in actions:
        function_name = action["function"]
        arguments = action["arguments"]

        # Preparing the arguments for the function call
        prepared_args = []
        for arg in arguments:

            if arg == "None":  # Handling the case where the argument is "None"
                prepared_args.append(None)
            elif arg in stored_results:
                # Use the variable name directly
                prepared_args.append(stored_results[arg])
            else:
                # Format the argument as a string or use as is
                prepared_arg = f'"{arg}"' if isinstance(arg, str) else arg
                prepared_args.append(prepared_arg)

        # Format the executable string
        if "store_result_as" in action:
            result_var = action["store_result_as"]
            exec_str = f'{result_var} = env.{function_name}({", ".join(map(str, prepared_args))})'
            stored_results[result_var] = result_var  # Store the variable name for later use
        else:
            exec_str = f'env.{function_name}({", ".join(map(str, prepared_args))})'

        executable_strings.append(exec_str)

    return executable_strings

def extract_arguments(response_json):
    # Regular expression pattern to extract arguments from action
    pattern = r'move_object\(([^)]+)\)'

    # List to hold extracted arguments
    extracted_arguments = []

    # Iterate over each option in response_json
    for option in response_json.get("options", []):
        action = option.get("action", "")
        match = re.search(pattern, action)

        if match:
            # Extract the content inside parentheses and split by comma
            arguments = match.group(1)
            args = [arg.strip() for arg in arguments.split(',')]
            extracted_arguments.append(args)

    return extracted_arguments

def decode_image(base64_image_string):
    """
    Decodes a Base64 encoded image string and returns it as a NumPy array.
    
    Parameters:
    base64_image_string (str): A Base64 encoded image string.
    
    Returns:
    numpy.ndarray: A NumPy array representing the image if successful, None otherwise.
    """
    # Remove Data URI scheme if present
    if "," in base64_image_string:
        base64_image_string = base64_image_string.split(',')[1]

    try:
        image_data = base64.b64decode(base64_image_string)
        image = Image.open(BytesIO(image_data))
        return np.array(image)
    except Exception as e:
        print(f"An error occurred: {e}")
        return None