Spaces:
Runtime error
Runtime error
update interactive gradio demo
Browse files- .gitattributes +38 -0
- app.py +97 -4
- gpt_helper.py +570 -0
- images/.gitattributes +1 -0
- images/semantic/category/1/1.png +3 -0
- images/semantic/category/1/2.png +3 -0
- images/semantic/category/1/3.png +3 -0
- images/semantic/category/1/4.png +3 -0
- images/semantic/category/1/5.png +3 -0
- images/semantic/category/2/1.png +3 -0
- images/semantic/category/2/2.png +3 -0
- images/semantic/category/2/3.png +3 -0
- images/semantic/category/2/4.png +3 -0
- images/semantic/category/2/5.png +3 -0
- images/semantic/color/1.png +3 -0
- images/semantic/color/2.png +3 -0
- images/semantic/color/3.png +3 -0
- images/semantic/color/4.png +3 -0
- images/semantic/shape/1.png +3 -0
- images/semantic/shape/2.png +3 -0
- images/semantic/shape/3.png +3 -0
- images/semantic/shape/4.png +3 -0
- images/semantic/shape/5.png +3 -0
- images/spatial-pattern/diagonal/1.png +3 -0
- images/spatial-pattern/diagonal/2.png +3 -0
- images/spatial-pattern/diagonal/3.png +3 -0
- images/spatial-pattern/diagonal/4.png +3 -0
- images/spatial-pattern/horizontal/1.png +3 -0
- images/spatial-pattern/horizontal/2.png +3 -0
- images/spatial-pattern/horizontal/3.png +3 -0
- images/spatial-pattern/horizontal/4.png +3 -0
- images/spatial-pattern/horizontal/5.png +3 -0
- images/spatial-pattern/quadrant/1.png +3 -0
- images/spatial-pattern/quadrant/2.png +3 -0
- images/spatial-pattern/quadrant/3.png +3 -0
- images/spatial-pattern/quadrant/4.png +3 -0
- images/spatial-pattern/quadrant/5.png +3 -0
- images/spatial-pattern/vertical/1.png +3 -0
- images/spatial-pattern/vertical/2.png +3 -0
- images/spatial-pattern/vertical/3.png +3 -0
- images/spatial-pattern/vertical/4.png +3 -0
- images/spatial-pattern/vertical/5.png +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,41 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
images/semantic/category/1/1.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
images/semantic/category/1/2.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
images/semantic/category/1/3.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
images/semantic/category/1/4.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
images/semantic/category/1/5.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
images/semantic/category/2/1.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
images/semantic/category/2/2.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
images/semantic/category/2/3.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
images/semantic/category/2/4.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
images/semantic/category/2/5.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
images/semantic/color/1.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
images/semantic/color/2.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
images/semantic/color/3.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
images/semantic/color/4.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
images/semantic/shape/1.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
images/semantic/shape/2.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
images/semantic/shape/3.png filter=lfs diff=lfs merge=lfs -text
|
53 |
+
images/semantic/shape/4.png filter=lfs diff=lfs merge=lfs -text
|
54 |
+
images/semantic/shape/5.png filter=lfs diff=lfs merge=lfs -text
|
55 |
+
images/spatial-pattern/diagonal/1.png filter=lfs diff=lfs merge=lfs -text
|
56 |
+
images/spatial-pattern/diagonal/2.png filter=lfs diff=lfs merge=lfs -text
|
57 |
+
images/spatial-pattern/diagonal/3.png filter=lfs diff=lfs merge=lfs -text
|
58 |
+
images/spatial-pattern/diagonal/4.png filter=lfs diff=lfs merge=lfs -text
|
59 |
+
images/spatial-pattern/horizontal/1.png filter=lfs diff=lfs merge=lfs -text
|
60 |
+
images/spatial-pattern/horizontal/2.png filter=lfs diff=lfs merge=lfs -text
|
61 |
+
images/spatial-pattern/horizontal/3.png filter=lfs diff=lfs merge=lfs -text
|
62 |
+
images/spatial-pattern/horizontal/4.png filter=lfs diff=lfs merge=lfs -text
|
63 |
+
images/spatial-pattern/horizontal/5.png filter=lfs diff=lfs merge=lfs -text
|
64 |
+
images/spatial-pattern/quadrant/1.png filter=lfs diff=lfs merge=lfs -text
|
65 |
+
images/spatial-pattern/quadrant/2.png filter=lfs diff=lfs merge=lfs -text
|
66 |
+
images/spatial-pattern/quadrant/3.png filter=lfs diff=lfs merge=lfs -text
|
67 |
+
images/spatial-pattern/quadrant/4.png filter=lfs diff=lfs merge=lfs -text
|
68 |
+
images/spatial-pattern/quadrant/5.png filter=lfs diff=lfs merge=lfs -text
|
69 |
+
images/spatial-pattern/vertical/1.png filter=lfs diff=lfs merge=lfs -text
|
70 |
+
images/spatial-pattern/vertical/2.png filter=lfs diff=lfs merge=lfs -text
|
71 |
+
images/spatial-pattern/vertical/3.png filter=lfs diff=lfs merge=lfs -text
|
72 |
+
images/spatial-pattern/vertical/4.png filter=lfs diff=lfs merge=lfs -text
|
73 |
+
images/spatial-pattern/vertical/5.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,7 +1,100 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
iface.launch(share=True)
|
|
|
1 |
+
#%%
|
2 |
+
import os
|
3 |
+
import openai
|
4 |
import gradio as gr
|
5 |
+
import sys
|
6 |
+
sys.path.append('./')
|
7 |
+
from gpt_helper import GPT4VisionClass, response_to_json
|
8 |
|
9 |
+
# Placeholder for the model variable and the confirmation text
|
10 |
+
model = None
|
11 |
+
model_status = "Model is not initialized."
|
12 |
+
|
13 |
+
def initialize_model(api_key):
|
14 |
+
global model, model_status
|
15 |
+
if model is None: # Initialize the model only if it hasn't been already
|
16 |
+
model = GPT4VisionClass(key=api_key, max_tokens=1024, temperature=0.9,
|
17 |
+
gpt_model="gpt-4-vision-preview",
|
18 |
+
role_msg="You are a helpful agent with vision capabilities; do not respond to objects not depicted in images.")
|
19 |
+
model_status = "Model initialized successfully with the provided API key."
|
20 |
+
else:
|
21 |
+
model_status = "Model has already been initialized."
|
22 |
+
return model_status
|
23 |
+
|
24 |
+
def add_text(state, query_text, image_paths=None, images=None):
|
25 |
+
if model is None:
|
26 |
+
return state, [("Error", "Model is not initialized. Please enter your OpenAI API Key.")]
|
27 |
+
images = image_paths if image_paths is not None else images
|
28 |
+
response_interaction = model.chat(query_text=query_text, image_paths=image_paths, images=None,
|
29 |
+
PRINT_USER_MSG=False, PRINT_GPT_OUTPUT=False,
|
30 |
+
RESET_CHAT=False, RETURN_RESPONSE=True, VISUALIZE=False, DETAIL='high')
|
31 |
+
result = model._get_response_content()
|
32 |
+
state.append((query_text, result))
|
33 |
+
return state, state
|
34 |
+
|
35 |
+
def scenario_button_clicked(scenario_name):
|
36 |
+
print(f"Scenario clicked: {scenario_name}")
|
37 |
+
return f"Scenario clicked: {scenario_name}"
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
# Define image paths for each subcategory under the main categories
|
41 |
+
image_paths = {
|
42 |
+
"Semantic Preference": {
|
43 |
+
"Color Preference": "./images/semantic/color/4.png",
|
44 |
+
"Shape Preference": "./images/semantic/shape/5.png",
|
45 |
+
"Category Preference: Fruits and Beverages ": "./images/semantic/category/1/5.png",
|
46 |
+
"Category Preference: Beverages and Snacks": "./images/semantic/category/2/5.png",
|
47 |
+
},
|
48 |
+
"Spatial Pattern Preference": {
|
49 |
+
"Vertical Line": "./images/spatial-pattern/vertical/5.png",
|
50 |
+
"Horizontal Line": "./images/spatial-pattern/horizontal/5.png",
|
51 |
+
"Diagonal Line": "./images/spatial-pattern/diagonal/4.png",
|
52 |
+
"Quadrants": "./images/spatial-pattern/quadrant/5.png",
|
53 |
+
},
|
54 |
+
}
|
55 |
+
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
######## Introduction for the demo
|
58 |
+
with gr.Column():
|
59 |
+
gr.Markdown("""
|
60 |
+
<div style='text-align: center;'>
|
61 |
+
<span style='font-size: 32px; font-weight: bold;'>[Running Examples] <span style='color: #FF9300;'>C</span>hain-<span style='color: #FF9300;'>o</span>f-<span style='color: #FF9300;'>V</span>isual-<span style='color: #FF9300;'>R</span>esiduals</span>
|
62 |
+
</div>
|
63 |
+
""")
|
64 |
+
gr.Markdown("""
|
65 |
+
In this paper, we focus on the problem of inferring underlying human preferences from a sequence of raw visual observations in tabletop manipulation environments with a variety of object types, named **V**isual **P**reference **I**nference (**VPI**).
|
66 |
+
To facilitate visual reasoning in the context of manipulation, we introduce the <span style='color: #FF9300;'>C</span>hain-<span style='color: #FF9300;'>o</span>f-<span style='color: #FF9300;'>V</span>isual-<span style='color: #FF9300;'>R</span>esiduals</span> (<span style='color: #FF9300;'>CoVR</span>) method. <span style='color: #FF9300;'>CoVR</span> employs a prompting mechanism
|
67 |
+
""")
|
68 |
+
|
69 |
+
with gr.Row():
|
70 |
+
for category, scenarios in image_paths.items():
|
71 |
+
with gr.Column():
|
72 |
+
gr.Markdown(f"## {category}")
|
73 |
+
with gr.Row(wrap=True):
|
74 |
+
for scenario, img_path in scenarios.items():
|
75 |
+
with gr.Column(layout='horizontal', variant='panel'):
|
76 |
+
gr.Image(value=img_path, tool=None).style(width='33%', margin='5px')
|
77 |
+
gr.Button(scenario, onclick=lambda x=scenario: scenario_button_clicked(x)).style(width='33%', margin='5px')
|
78 |
+
|
79 |
+
######## Input OpenAI API Key and display initialization result
|
80 |
+
with gr.Row(): # Use gr.Row for horizontal layout
|
81 |
+
# API Key Input
|
82 |
+
with gr.Column():
|
83 |
+
openai_gpt4_key = gr.Textbox(label="OpenAI GPT4 Key", type="password", placeholder="sk..",
|
84 |
+
info="You have to provide your own GPT4 keys for this app to function properly")
|
85 |
+
initialize_button = gr.Button("Initialize Model")
|
86 |
+
# Initialization Button and Result Display
|
87 |
+
with gr.Column():
|
88 |
+
model_status_text = gr.Text(label="Initialize API Result", info="The result of the model initialization will be displayed here.")
|
89 |
+
initialize_button.click(initialize_model, inputs=[openai_gpt4_key], outputs=[model_status_text])
|
90 |
+
|
91 |
+
######## Chatbot
|
92 |
+
chatbot = gr.Chatbot(elem_id="chatbot")
|
93 |
+
state = gr.State([])
|
94 |
+
with gr.Row():
|
95 |
+
query_text = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
|
96 |
+
query_text.submit(add_text, inputs=[state, query_text], outputs=[state, chatbot])
|
97 |
+
query_text.submit(lambda: "", inputs=None, outputs=query_text)
|
98 |
+
|
99 |
+
demo.launch(share=True, inline=True)
|
100 |
|
|
|
|
gpt_helper.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#%%
|
2 |
+
import math
|
3 |
+
from matplotlib import gridspec
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import urllib.request
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
import re
|
10 |
+
import copy
|
11 |
+
import os
|
12 |
+
import cv2
|
13 |
+
import base64
|
14 |
+
from io import BytesIO
|
15 |
+
import requests
|
16 |
+
import openai
|
17 |
+
from tenacity import retry, stop_after_attempt, wait_fixed
|
18 |
+
from IPython.display import Markdown,display
|
19 |
+
from rich.console import Console
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
import sys
|
23 |
+
|
24 |
+
#%%
|
25 |
+
def visualize_subplots(images, cols=3):
|
26 |
+
"""
|
27 |
+
Visualize a list of images.
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
images (list): List of images. Each image can be a path to an image file or a numpy array.
|
31 |
+
cols (int): Number of columns in the image grid.
|
32 |
+
"""
|
33 |
+
imgs_to_show = []
|
34 |
+
|
35 |
+
# Load images if they are paths, or directly use them if they are numpy arrays
|
36 |
+
for img in images:
|
37 |
+
if isinstance(img, str): # Assuming it's a file path
|
38 |
+
img_data = plt.imread(img)
|
39 |
+
elif isinstance(img, np.ndarray): # Assuming it's a numpy array
|
40 |
+
img_data = img
|
41 |
+
else:
|
42 |
+
raise ValueError("Images should be either file paths or numpy arrays.")
|
43 |
+
imgs_to_show.append(img_data)
|
44 |
+
|
45 |
+
N = len(imgs_to_show)
|
46 |
+
if N == 0:
|
47 |
+
print("No images to display.")
|
48 |
+
return
|
49 |
+
|
50 |
+
rows = int(math.ceil(N / cols))
|
51 |
+
gs = gridspec.GridSpec(rows, cols)
|
52 |
+
fig = plt.figure(figsize=(cols * 4, rows * 4))
|
53 |
+
|
54 |
+
for n in range(N):
|
55 |
+
ax = fig.add_subplot(gs[n])
|
56 |
+
ax.imshow(imgs_to_show[n])
|
57 |
+
ax.set_title(f"Image {n + 1}")
|
58 |
+
ax.axis('off')
|
59 |
+
|
60 |
+
fig.tight_layout()
|
61 |
+
plt.show()
|
62 |
+
|
63 |
+
def set_openai_api_key_from_txt(key_path='./key.txt',VERBOSE=True):
|
64 |
+
"""
|
65 |
+
Set OpenAI API Key from a txt file
|
66 |
+
"""
|
67 |
+
with open(key_path, 'r') as f:
|
68 |
+
OPENAI_API_KEY = f.read()
|
69 |
+
openai.api_key = OPENAI_API_KEY
|
70 |
+
if VERBOSE:
|
71 |
+
print ("OpenAI API Key Ready from [%s]."%(key_path))
|
72 |
+
|
73 |
+
#%%
|
74 |
+
class GPT4VisionClass:
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
gpt_model: str = "gpt-4-vision-preview",
|
78 |
+
role_msg: str = "You are a helpful agent with vision capabilities; do not respond to objects not depicted in images.",
|
79 |
+
# key_path='../key/rilab_key.txt',
|
80 |
+
key=None,
|
81 |
+
max_tokens = 512, temperature = 0.9, n = 1, stop = [], VERBOSE=True,
|
82 |
+
image_max_size:int = 512,
|
83 |
+
):
|
84 |
+
self.gpt_model = gpt_model
|
85 |
+
self.role_msg = role_msg
|
86 |
+
self.messages = [{"role": "system", "content": f"{role_msg}"}]
|
87 |
+
self.init_messages = [{"role": "system", "content": f"{role_msg}"}]
|
88 |
+
self.history = [{"role": "system", "content": f"{role_msg}"}]
|
89 |
+
self.image_max_size = image_max_size
|
90 |
+
|
91 |
+
# GPT-4 parameters
|
92 |
+
self.max_tokens = max_tokens
|
93 |
+
self.temperature = temperature
|
94 |
+
self.n = n
|
95 |
+
self.stop = stop
|
96 |
+
self.VERBOSE = VERBOSE
|
97 |
+
if self.VERBOSE:
|
98 |
+
self.console = Console()
|
99 |
+
self.response = None
|
100 |
+
self.image_token_count = 0
|
101 |
+
|
102 |
+
self._setup_client_with_key(key)
|
103 |
+
# self._setup_client(key_path)
|
104 |
+
|
105 |
+
def _setup_client_with_key(self, key):
|
106 |
+
if self.VERBOSE:
|
107 |
+
self.console.print(f"[bold cyan]api key:[%s][/bold cyan]" % (key))
|
108 |
+
|
109 |
+
OPENAI_API_KEY = key
|
110 |
+
self.client = openai.OpenAI(api_key=OPENAI_API_KEY)
|
111 |
+
|
112 |
+
if self.VERBOSE:
|
113 |
+
self.console.print(
|
114 |
+
"[bold cyan]Chat agent using [%s] initialized with the follow role:[%s][/bold cyan]"
|
115 |
+
% (self.gpt_model, self.role_msg)
|
116 |
+
)
|
117 |
+
|
118 |
+
def _setup_client(self, key_path):
|
119 |
+
if self.VERBOSE:
|
120 |
+
self.console.print(f"[bold cyan]key_path:[%s][/bold cyan]" % (key_path))
|
121 |
+
|
122 |
+
with open(key_path, "r") as f:
|
123 |
+
OPENAI_API_KEY = f.read()
|
124 |
+
self.client = openai.OpenAI(api_key=OPENAI_API_KEY)
|
125 |
+
|
126 |
+
if self.VERBOSE:
|
127 |
+
self.console.print(
|
128 |
+
"[bold cyan]Chat agent using [%s] initialized with the follow role:[%s][/bold cyan]"
|
129 |
+
% (self.gpt_model, self.role_msg)
|
130 |
+
)
|
131 |
+
|
132 |
+
def _backup_chat(self):
|
133 |
+
self.init_messages = copy.copy(self.messages)
|
134 |
+
|
135 |
+
def _get_response_content(self):
|
136 |
+
if self.response:
|
137 |
+
return self.response.choices[0].message.content
|
138 |
+
else:
|
139 |
+
return None
|
140 |
+
|
141 |
+
def _get_response_status(self):
|
142 |
+
if self.response:
|
143 |
+
return self.response.choices[0].message.finish_reason
|
144 |
+
else:
|
145 |
+
return None
|
146 |
+
|
147 |
+
def _encode_image_path(self, image_path):
|
148 |
+
# with open(image_path, "rb") as image_file:
|
149 |
+
image_pil = Image.open(image_path)
|
150 |
+
image_pil.thumbnail(
|
151 |
+
(self.image_max_size, self.image_max_size)
|
152 |
+
)
|
153 |
+
image_pil_rgb = image_pil.convert("RGB")
|
154 |
+
# change pil to base64 string
|
155 |
+
img_buf = io.BytesIO()
|
156 |
+
image_pil_rgb.save(img_buf, format="PNG")
|
157 |
+
return base64.b64encode(img_buf.getvalue()).decode('utf-8')
|
158 |
+
|
159 |
+
def _encode_image(self, image):
|
160 |
+
"""
|
161 |
+
Save the image to a temporary file and encode it to base64
|
162 |
+
"""
|
163 |
+
# save Image:PIL to temp file
|
164 |
+
cv2.imwrite("temp.jpg", np.array(image))
|
165 |
+
with open("temp.jpg", "rb") as image_file:
|
166 |
+
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
|
167 |
+
os.remove("temp.jpg")
|
168 |
+
return encoded_image
|
169 |
+
|
170 |
+
def _count_image_tokens(self, width, height):
|
171 |
+
h = ceil(height / 512)
|
172 |
+
w = ceil(width / 512)
|
173 |
+
n = w * h
|
174 |
+
total = 85 + 170 * n
|
175 |
+
return total
|
176 |
+
|
177 |
+
def set_common_prompt(self, common_prompt):
|
178 |
+
self.messages.append({"role": "system", "content": common_prompt})
|
179 |
+
|
180 |
+
# @retry(stop=stop_after_attempt(10), wait=wait_fixed(5))
|
181 |
+
def chat(
|
182 |
+
self,
|
183 |
+
query_text,
|
184 |
+
image_paths=[], images=None, APPEND=True,
|
185 |
+
PRINT_USER_MSG=True,
|
186 |
+
PRINT_GPT_OUTPUT=True,
|
187 |
+
RESET_CHAT=False,
|
188 |
+
RETURN_RESPONSE=True,
|
189 |
+
MAX_TOKENS = 512,
|
190 |
+
VISUALIZE = False,
|
191 |
+
DETAIL = "auto",
|
192 |
+
CROP = None,
|
193 |
+
):
|
194 |
+
"""
|
195 |
+
image_paths: list of image paths
|
196 |
+
images: list of images
|
197 |
+
You can only provide either image_paths or image.
|
198 |
+
"""
|
199 |
+
if DETAIL:
|
200 |
+
self.console.print(f"[bold cyan]DETAIL:[/bold cyan] {DETAIL}")
|
201 |
+
self.detail = DETAIL
|
202 |
+
content = [{"type": "text", "text": query_text}]
|
203 |
+
content_image_not_encoded = [{"type": "text", "text": query_text}]
|
204 |
+
# Prepare the history temp
|
205 |
+
if image_paths is not None:
|
206 |
+
local_imgs = []
|
207 |
+
for image_path_idx, image_path in enumerate(image_paths):
|
208 |
+
with Image.open(image_path) as img:
|
209 |
+
width, height = img.size
|
210 |
+
if CROP:
|
211 |
+
img = img.crop(CROP)
|
212 |
+
width, height = img.size
|
213 |
+
# convert PIL to numpy array
|
214 |
+
local_imgs.append(np.array(img))
|
215 |
+
self.image_token_count += self._count_image_tokens(width, height)
|
216 |
+
|
217 |
+
print(f"[{image_path_idx}/{len(image_paths)}] image_path: {image_path}")
|
218 |
+
base64_image = self._encode_image_path(image_path)
|
219 |
+
image_content = {
|
220 |
+
"type": "image_url",
|
221 |
+
"image_url": {
|
222 |
+
"url": f"data:image/jpeg;base64,{base64_image}",
|
223 |
+
"detail": self.detail
|
224 |
+
}
|
225 |
+
}
|
226 |
+
image_content_in_numpy_array = {
|
227 |
+
"type": "image_numpy",
|
228 |
+
"image": np.array(Image.open(image_path))
|
229 |
+
}
|
230 |
+
content.append(image_content)
|
231 |
+
content_image_not_encoded.append(image_content_in_numpy_array)
|
232 |
+
elif images is not None:
|
233 |
+
local_imgs = []
|
234 |
+
for image_idx, image in enumerate(images):
|
235 |
+
image_pil = Image.fromarray(image)
|
236 |
+
if CROP:
|
237 |
+
image_pil = image_pil.crop(CROP)
|
238 |
+
local_imgs.append(image_pil)
|
239 |
+
# width, height = image_pil.size
|
240 |
+
image_pil.thumbnail(
|
241 |
+
(self.image_max_size, self.image_max_size)
|
242 |
+
)
|
243 |
+
width, height = image_pil.size
|
244 |
+
self.image_token_count += self._count_image_tokens(width, height)
|
245 |
+
self.console.print(f"[deep_sky_blue3][{image_idx+1}/{len(images)}] Image provided: [Original]: {image.shape}, [Downsize]: {image_pil.size}[/deep_sky_blue3]")
|
246 |
+
base64_image = self._encode_image(image_pil)
|
247 |
+
image_content = {
|
248 |
+
"type": "image_url",
|
249 |
+
"image_url": {
|
250 |
+
"url": f"data:image/jpeg;base64,{base64_image}",
|
251 |
+
"detail": self.detail
|
252 |
+
}
|
253 |
+
}
|
254 |
+
image_content_in_numpy_array = {
|
255 |
+
"type": "image_numpy",
|
256 |
+
"image": image
|
257 |
+
}
|
258 |
+
content.append(image_content)
|
259 |
+
content_image_not_encoded.append(image_content_in_numpy_array)
|
260 |
+
else:
|
261 |
+
self.console.print("[bold red]Neither image_paths nor images are provided.[/bold red]")
|
262 |
+
|
263 |
+
if VISUALIZE:
|
264 |
+
if image_paths:
|
265 |
+
self.console.print("[deep_sky_blue3][VISUALIZE][/deep_sky_blue3]")
|
266 |
+
if CROP:
|
267 |
+
visualize_subplots(local_imgs)
|
268 |
+
else:
|
269 |
+
visualize_subplots(image_paths)
|
270 |
+
elif images:
|
271 |
+
self.console.print("[deep_sky_blue3][VISUALIZE][/deep_sky_blue3]")
|
272 |
+
if CROP:
|
273 |
+
local_imgs = np.array(local_imgs)
|
274 |
+
visualize_subplots(local_imgs)
|
275 |
+
else:
|
276 |
+
visualize_subplots(images)
|
277 |
+
|
278 |
+
self.messages.append({"role": "user", "content": content})
|
279 |
+
self.history.append({"role": "user", "content": content_image_not_encoded})
|
280 |
+
payload = self.create_payload(model=self.gpt_model)
|
281 |
+
self.response = self.client.chat.completions.create(**payload)
|
282 |
+
|
283 |
+
if PRINT_USER_MSG:
|
284 |
+
self.console.print("[deep_sky_blue3][USER_MSG][/deep_sky_blue3]")
|
285 |
+
print(query_text)
|
286 |
+
if PRINT_GPT_OUTPUT:
|
287 |
+
self.console.print("[spring_green4][GPT_OUTPUT][/spring_green4]")
|
288 |
+
print(self._get_response_content())
|
289 |
+
# Reset
|
290 |
+
if RESET_CHAT:
|
291 |
+
self.messages = self.init_messages
|
292 |
+
# Return
|
293 |
+
if RETURN_RESPONSE:
|
294 |
+
return self._get_response_content()
|
295 |
+
|
296 |
+
@retry(stop=stop_after_attempt(10), wait=wait_fixed(5))
|
297 |
+
def chat_multiple_images(self, image_paths, query_text, model="gpt-4-vision-preview", max_tokens=300):
|
298 |
+
messages = [
|
299 |
+
{
|
300 |
+
"role": "user",
|
301 |
+
"content": [{"type": "text", "text": query_text}]
|
302 |
+
}
|
303 |
+
]
|
304 |
+
for image_path in image_paths:
|
305 |
+
base64_image = self._encode_image(image_path)
|
306 |
+
messages[0]["content"].append(
|
307 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
308 |
+
)
|
309 |
+
response = self.client.chat.completions.create(
|
310 |
+
model=model,
|
311 |
+
messages=messages,
|
312 |
+
max_tokens=max_tokens
|
313 |
+
)
|
314 |
+
return response
|
315 |
+
|
316 |
+
@retry(stop=stop_after_attempt(10), wait=wait_fixed(5))
|
317 |
+
def generate_image(self, prompt, size="1024x1024", quality="standard", n=1):
|
318 |
+
response = self.client.images.generate(
|
319 |
+
model="dall-e-3",
|
320 |
+
prompt=prompt,
|
321 |
+
size=size,
|
322 |
+
quality=quality,
|
323 |
+
n=n
|
324 |
+
)
|
325 |
+
return response
|
326 |
+
|
327 |
+
def visualize_image(self, image_response):
|
328 |
+
image_url = image_response.data[0].url
|
329 |
+
# Open the URL and convert the image to a NumPy array
|
330 |
+
with urllib.request.urlopen(image_url) as url:
|
331 |
+
img = Image.open(url)
|
332 |
+
img_array = np.array(img)
|
333 |
+
|
334 |
+
plt.imshow(img_array)
|
335 |
+
plt.axis('off')
|
336 |
+
plt.show()
|
337 |
+
|
338 |
+
def create_payload(self,model):
|
339 |
+
payload = {
|
340 |
+
"model": model,
|
341 |
+
"messages": self.messages,
|
342 |
+
"max_tokens": self.max_tokens,
|
343 |
+
"temperature": self.temperature,
|
344 |
+
"n": self.n
|
345 |
+
}
|
346 |
+
if len(self.stop) > 0:
|
347 |
+
payload["stop"] = self.stop
|
348 |
+
return payload
|
349 |
+
|
350 |
+
def save_interaction(self, data, file_path: str = "./scripts/interaction_history.json"):
|
351 |
+
"""
|
352 |
+
Save the chat history to a JSON file.
|
353 |
+
The history includes the user role, content, and images stored as NumPy arrays.
|
354 |
+
"""
|
355 |
+
self.history = data.copy()
|
356 |
+
history_to_save = []
|
357 |
+
for entry in self.history:
|
358 |
+
entry_to_save = {
|
359 |
+
"role": entry["role"],
|
360 |
+
"content": []
|
361 |
+
}
|
362 |
+
# Check if 'content' is a string or a list
|
363 |
+
if isinstance(entry["content"], str):
|
364 |
+
entry_to_save["content"].append({"type": "text", "text": entry["content"]})
|
365 |
+
elif isinstance(entry["content"], list):
|
366 |
+
for content in entry["content"]:
|
367 |
+
if content["type"] == "text":
|
368 |
+
entry_to_save["content"].append(content)
|
369 |
+
elif content["type"] == "image_numpy":
|
370 |
+
entry_to_save["content"].append({"type": "image_numpy", "image": content["image"].tolist()})
|
371 |
+
elif content["type"] == "image_url":
|
372 |
+
entry_to_save["content"].append(content)
|
373 |
+
history_to_save.append(entry_to_save)
|
374 |
+
with open(file_path, "w") as file:
|
375 |
+
json.dump(history_to_save, file, indent=4)
|
376 |
+
|
377 |
+
if self.VERBOSE:
|
378 |
+
self.console.print(f"[bold green]Chat history saved to {file_path}[/bold green]")
|
379 |
+
|
380 |
+
def get_total_token(self):
|
381 |
+
"""
|
382 |
+
Get total token used
|
383 |
+
"""
|
384 |
+
if self.VERBOSE:
|
385 |
+
self.console.print(f"[bold cyan]Total token used: {self.response.usage.total_tokens}[/bold cyan]")
|
386 |
+
return self.response.usage.total_tokens
|
387 |
+
|
388 |
+
def get_image_token(self):
|
389 |
+
"""
|
390 |
+
Get image token used
|
391 |
+
"""
|
392 |
+
if self.VERBOSE:
|
393 |
+
self.console.print(f"[bold cyan]Image token used: {self.image_token_count}[/bold cyan]")
|
394 |
+
return self.image_token_count
|
395 |
+
|
396 |
+
def reset_tokens(self):
|
397 |
+
"""
|
398 |
+
Reset total and image token used
|
399 |
+
"""
|
400 |
+
self.response.usage.total_tokens = 0
|
401 |
+
self.image_token_count = 0
|
402 |
+
if self.VERBOSE:
|
403 |
+
self.console.print(f"[bold cyan]Image token reset[/bold cyan]")
|
404 |
+
|
405 |
+
from math import ceil
|
406 |
+
|
407 |
+
def count_image_tokens(width: int, height: int):
|
408 |
+
h = ceil(height / 512)
|
409 |
+
w = ceil(width / 512)
|
410 |
+
n = w * h
|
411 |
+
total = 85 + 170 * n
|
412 |
+
return total
|
413 |
+
|
414 |
+
def printmd(string):
|
415 |
+
display(Markdown(string))
|
416 |
+
|
417 |
+
def extract_quoted_words(string):
|
418 |
+
quoted_words = re.findall(r'"([^"]*)"', string)
|
419 |
+
return quoted_words
|
420 |
+
|
421 |
+
def response_to_json(response):
|
422 |
+
# Remove the markdown code block formatting
|
423 |
+
response_strip = response.strip('```json\n').rstrip('```')
|
424 |
+
# Convert the cleaned string to a JSON object
|
425 |
+
try:
|
426 |
+
response_json = json.loads(response_strip)
|
427 |
+
except json.JSONDecodeError as e:
|
428 |
+
response_json = None
|
429 |
+
error_message = str(e)
|
430 |
+
|
431 |
+
return response_json, error_message if response_json is None else ""
|
432 |
+
|
433 |
+
def match_objects(response_object_names, original_object_names, type_conversion):
|
434 |
+
matched_objects = []
|
435 |
+
|
436 |
+
for res_obj_name in response_object_names:
|
437 |
+
components = res_obj_name.split('_')
|
438 |
+
converted_components = set()
|
439 |
+
|
440 |
+
# Applying type conversion and creating a unique set of components
|
441 |
+
for comp in components:
|
442 |
+
converted_comp = type_conversion.get(comp, comp)
|
443 |
+
converted_components.add(converted_comp)
|
444 |
+
# Check if the unique set of converted components is in any of the original object names
|
445 |
+
for original in original_object_names:
|
446 |
+
if all(converted_comp in original for converted_comp in converted_components):
|
447 |
+
matched_objects.append(original)
|
448 |
+
break
|
449 |
+
else:
|
450 |
+
print(f"No match found for {res_obj_name}")
|
451 |
+
print(f"Type manually in the set of {original_object_names}:")
|
452 |
+
matched_objects.append(input())
|
453 |
+
|
454 |
+
return matched_objects
|
455 |
+
|
456 |
+
def parse_and_get_action(response_json, option_idx, original_objects, type_conversion):
|
457 |
+
func_call_list = []
|
458 |
+
action = response_json["options"][option_idx-1]["action"]
|
459 |
+
|
460 |
+
# Splitting actions correctly if there are multiple actions
|
461 |
+
if isinstance(action, str):
|
462 |
+
actions = [act.strip() + ')' for act in action.split('),') if act.strip()]
|
463 |
+
elif isinstance(action, list):
|
464 |
+
actions = action
|
465 |
+
else:
|
466 |
+
raise ValueError("Action must be a string or a list of strings")
|
467 |
+
|
468 |
+
for act in actions:
|
469 |
+
# Handle special cases; none-action / done-action
|
470 |
+
if act in ["move_object(None, None)", "set_done()"]:
|
471 |
+
func_call_list.append(f"{act}")
|
472 |
+
continue
|
473 |
+
|
474 |
+
# Regular action processing
|
475 |
+
func_name, args = act.split('(', 1)
|
476 |
+
args = args.rstrip(')')
|
477 |
+
args_list = args.split(', ')
|
478 |
+
new_args = []
|
479 |
+
|
480 |
+
for arg in args_list:
|
481 |
+
arg_parts = arg.split('_')
|
482 |
+
# Applying type conversion to each part of arg
|
483 |
+
converted_arg_parts = [type_conversion.get(part, part) for part in arg_parts]
|
484 |
+
matched_name = match_objects(["_".join(converted_arg_parts)], original_objects, type_conversion)
|
485 |
+
if matched_name:
|
486 |
+
arg = matched_name[0]
|
487 |
+
|
488 |
+
new_args.append(f'"{arg}"')
|
489 |
+
|
490 |
+
func_call = f"{func_name}({', '.join(new_args)})"
|
491 |
+
func_call_list.append(func_call)
|
492 |
+
|
493 |
+
return func_call_list
|
494 |
+
|
495 |
+
def parse_actions_to_executable_strings(response_json, option_idx, env):
|
496 |
+
actions = response_json["options"][option_idx - 1]["actions"]
|
497 |
+
executable_strings = []
|
498 |
+
stored_results = {}
|
499 |
+
|
500 |
+
for action in actions:
|
501 |
+
function_name = action["function"]
|
502 |
+
arguments = action["arguments"]
|
503 |
+
|
504 |
+
# Preparing the arguments for the function call
|
505 |
+
prepared_args = []
|
506 |
+
for arg in arguments:
|
507 |
+
|
508 |
+
if arg == "None": # Handling the case where the argument is "None"
|
509 |
+
prepared_args.append(None)
|
510 |
+
elif arg in stored_results:
|
511 |
+
# Use the variable name directly
|
512 |
+
prepared_args.append(stored_results[arg])
|
513 |
+
else:
|
514 |
+
# Format the argument as a string or use as is
|
515 |
+
prepared_arg = f'"{arg}"' if isinstance(arg, str) else arg
|
516 |
+
prepared_args.append(prepared_arg)
|
517 |
+
|
518 |
+
# Format the executable string
|
519 |
+
if "store_result_as" in action:
|
520 |
+
result_var = action["store_result_as"]
|
521 |
+
exec_str = f'{result_var} = env.{function_name}({", ".join(map(str, prepared_args))})'
|
522 |
+
stored_results[result_var] = result_var # Store the variable name for later use
|
523 |
+
else:
|
524 |
+
exec_str = f'env.{function_name}({", ".join(map(str, prepared_args))})'
|
525 |
+
|
526 |
+
executable_strings.append(exec_str)
|
527 |
+
|
528 |
+
return executable_strings
|
529 |
+
|
530 |
+
def extract_arguments(response_json):
|
531 |
+
# Regular expression pattern to extract arguments from action
|
532 |
+
pattern = r'move_object\(([^)]+)\)'
|
533 |
+
|
534 |
+
# List to hold extracted arguments
|
535 |
+
extracted_arguments = []
|
536 |
+
|
537 |
+
# Iterate over each option in response_json
|
538 |
+
for option in response_json.get("options", []):
|
539 |
+
action = option.get("action", "")
|
540 |
+
match = re.search(pattern, action)
|
541 |
+
|
542 |
+
if match:
|
543 |
+
# Extract the content inside parentheses and split by comma
|
544 |
+
arguments = match.group(1)
|
545 |
+
args = [arg.strip() for arg in arguments.split(',')]
|
546 |
+
extracted_arguments.append(args)
|
547 |
+
|
548 |
+
return extracted_arguments
|
549 |
+
|
550 |
+
def decode_image(base64_image_string):
|
551 |
+
"""
|
552 |
+
Decodes a Base64 encoded image string and returns it as a NumPy array.
|
553 |
+
|
554 |
+
Parameters:
|
555 |
+
base64_image_string (str): A Base64 encoded image string.
|
556 |
+
|
557 |
+
Returns:
|
558 |
+
numpy.ndarray: A NumPy array representing the image if successful, None otherwise.
|
559 |
+
"""
|
560 |
+
# Remove Data URI scheme if present
|
561 |
+
if "," in base64_image_string:
|
562 |
+
base64_image_string = base64_image_string.split(',')[1]
|
563 |
+
|
564 |
+
try:
|
565 |
+
image_data = base64.b64decode(base64_image_string)
|
566 |
+
image = Image.open(BytesIO(image_data))
|
567 |
+
return np.array(image)
|
568 |
+
except Exception as e:
|
569 |
+
print(f"An error occurred: {e}")
|
570 |
+
return None
|
images/.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
images/semantic/category/1/1.png
ADDED
![]() |
Git LFS Details
|
images/semantic/category/1/2.png
ADDED
![]() |
Git LFS Details
|
images/semantic/category/1/3.png
ADDED
![]() |
Git LFS Details
|
images/semantic/category/1/4.png
ADDED
![]() |
Git LFS Details
|
images/semantic/category/1/5.png
ADDED
![]() |
Git LFS Details
|
images/semantic/category/2/1.png
ADDED
![]() |
Git LFS Details
|
images/semantic/category/2/2.png
ADDED
![]() |
Git LFS Details
|
images/semantic/category/2/3.png
ADDED
![]() |
Git LFS Details
|
images/semantic/category/2/4.png
ADDED
![]() |
Git LFS Details
|
images/semantic/category/2/5.png
ADDED
![]() |
Git LFS Details
|
images/semantic/color/1.png
ADDED
![]() |
Git LFS Details
|
images/semantic/color/2.png
ADDED
![]() |
Git LFS Details
|
images/semantic/color/3.png
ADDED
![]() |
Git LFS Details
|
images/semantic/color/4.png
ADDED
![]() |
Git LFS Details
|
images/semantic/shape/1.png
ADDED
![]() |
Git LFS Details
|
images/semantic/shape/2.png
ADDED
![]() |
Git LFS Details
|
images/semantic/shape/3.png
ADDED
![]() |
Git LFS Details
|
images/semantic/shape/4.png
ADDED
![]() |
Git LFS Details
|
images/semantic/shape/5.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/diagonal/1.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/diagonal/2.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/diagonal/3.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/diagonal/4.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/horizontal/1.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/horizontal/2.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/horizontal/3.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/horizontal/4.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/horizontal/5.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/quadrant/1.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/quadrant/2.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/quadrant/3.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/quadrant/4.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/quadrant/5.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/vertical/1.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/vertical/2.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/vertical/3.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/vertical/4.png
ADDED
![]() |
Git LFS Details
|
images/spatial-pattern/vertical/5.png
ADDED
![]() |
Git LFS Details
|