flux-kontext / app.py
jiuface's picture
Update app.py
8b2e3f4 verified
from typing import Tuple, Optional
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
import json
import boto3
from io import BytesIO
from datetime import datetime
from huggingface_hub import login
import os
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from diffusers.utils import load_image, make_image_grid
from datetime import datetime
import time
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
@spaces.GPU
def infer(
input_image,
prompt,
seed,
randomize_seed,
guidance_scale,
steps,
progress
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image:
draft_image = input_image.convert("RGB")
image = pipe(
image=draft_image,
prompt=prompt,
guidance_scale=guidance_scale,
width = draft_image.size[0],
height = draft_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
else:
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image
def process(image_url, prompt, seed, randomize_seed, guidance_scale, steps, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
result = {"status": "false", "message": ""}
input_image = load_image(image_url)
if not isinstance(input_image, Image.Image):
result["status"] = "fail"
result["message"] = "Invalid input image url"
return json.dumps(result)
try:
generated_image = infer(input_image, prompt, seed, randomize_seed, guidance_scale, steps, progress)
except Exception as e:
result["status"] = "faield"
result["message"] = "generate image failed"
generated_image = None
if generated_image:
if upload_to_r2:
url = upload_image_to_r2(generated_image, account_id, access_key, secret_key, bucket)
result = {"status": "success", "message": "upload image success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
progress(100, "finish!")
return json.dumps(result)
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
with calculateDuration("Upload image"):
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
s3 = boto3.client(
's3',
endpoint_url=connectionUrl,
region_name='auto',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_file)
print("upload finish", image_file)
# start to generate thumbnail
thumbnail = image.copy()
thumbnail_width = 256
aspect_ratio = image.height / image.width
thumbnail_height = int(thumbnail_width * aspect_ratio)
thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS)
# Generate the thumbnail image filename
thumbnail_file = image_file.replace(".png", "_thumbnail.png")
# Save thumbnail to buffer and upload
thumbnail_buffer = BytesIO()
thumbnail.save(thumbnail_buffer, "PNG")
thumbnail_buffer.seek(0)
s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file)
print("upload thumbnail finish", thumbnail_file)
return image_file
def dummy(image_url, prompt, seed, randomize_seed, guidance_scale, steps, upload_to_r2, account_id, access_key, secret_key, bucket):
# 返回一张纯黑图和空json,安全无异常
black = Image.new("RGB", (256,256))
return [black], '{"status":"dummy"}'
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(f"# FLUX.1 Kontext [dev]")
with gr.Row():
with gr.Column():
image_url = gr.Textbox(
label="Orginal image url",
show_label=True,
max_lines=1,
placeholder="Enter image url for inpainting",
container=False
)
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
run_button = gr.Button("Run")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
value=28,
step=1
)
with gr.Accordion("R2 Settings", open=False):
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
with gr.Row():
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id", value="")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here", value="")
with gr.Row():
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here", value="")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here", value="")
with gr.Column():
output_json_component = gr.Code(label="JSON Result", language="json", value="{}")
run_button.click(
fn=process,
inputs=[
image_url,
prompt,
seed,
randomize_seed,
guidance_scale,
steps,
upload_to_r2,
account_id,
access_key,
secret_key,
bucket
],
outputs = [
output_json_component
],
api_name="predict"
)
demo.queue(api_open=True)
demo.launch(share=True)