from typing import Tuple, Optional import gradio as gr import numpy as np import spaces import torch import random from PIL import Image import json import boto3 from io import BytesIO from datetime import datetime from huggingface_hub import login import os from diffusers import FluxKontextPipeline from diffusers.utils import load_image from diffusers.utils import load_image, make_image_grid from datetime import datetime import time HF_TOKEN = os.environ.get("HF_TOKEN") login(token=HF_TOKEN) MAX_SEED = np.iinfo(np.int32).max pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time)) print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}") return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time)) if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") @spaces.GPU def infer( input_image, prompt, seed, randomize_seed, guidance_scale, steps, progress ): if randomize_seed: seed = random.randint(0, MAX_SEED) if input_image: draft_image = input_image.convert("RGB") image = pipe( image=draft_image, prompt=prompt, guidance_scale=guidance_scale, width = draft_image.size[0], height = draft_image.size[1], num_inference_steps=steps, generator=torch.Generator().manual_seed(seed), ).images[0] else: image = pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=steps, generator=torch.Generator().manual_seed(seed), ).images[0] return image def process(image_url, prompt, seed, randomize_seed, guidance_scale, steps, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)): result = {"status": "false", "message": ""} input_image = load_image(image_url) if not isinstance(input_image, Image.Image): result["status"] = "fail" result["message"] = "Invalid input image url" return json.dumps(result) try: generated_image = infer(input_image, prompt, seed, randomize_seed, guidance_scale, steps, progress) except Exception as e: result["status"] = "faield" result["message"] = "generate image failed" generated_image = None if generated_image: if upload_to_r2: url = upload_image_to_r2(generated_image, account_id, access_key, secret_key, bucket) result = {"status": "success", "message": "upload image success", "url": url} else: result = {"status": "success", "message": "Image generated but not uploaded"} progress(100, "finish!") return json.dumps(result) def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name): with calculateDuration("Upload image"): print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name) connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com" s3 = boto3.client( 's3', endpoint_url=connectionUrl, region_name='auto', aws_access_key_id=access_key, aws_secret_access_key=secret_key ) current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S") image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png" buffer = BytesIO() image.save(buffer, "PNG") buffer.seek(0) s3.upload_fileobj(buffer, bucket_name, image_file) print("upload finish", image_file) # start to generate thumbnail thumbnail = image.copy() thumbnail_width = 256 aspect_ratio = image.height / image.width thumbnail_height = int(thumbnail_width * aspect_ratio) thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS) # Generate the thumbnail image filename thumbnail_file = image_file.replace(".png", "_thumbnail.png") # Save thumbnail to buffer and upload thumbnail_buffer = BytesIO() thumbnail.save(thumbnail_buffer, "PNG") thumbnail_buffer.seek(0) s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file) print("upload thumbnail finish", thumbnail_file) return image_file def dummy(image_url, prompt, seed, randomize_seed, guidance_scale, steps, upload_to_r2, account_id, access_key, secret_key, bucket): # 返回一张纯黑图和空json,安全无异常 black = Image.new("RGB", (256,256)) return [black], '{"status":"dummy"}' with gr.Blocks() as demo: with gr.Column(): gr.Markdown(f"# FLUX.1 Kontext [dev]") with gr.Row(): with gr.Column(): image_url = gr.Textbox( label="Orginal image url", show_label=True, max_lines=1, placeholder="Enter image url for inpainting", container=False ) with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", container=False, ) run_button = gr.Button("Run") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=2.5, ) steps = gr.Slider( label="Steps", minimum=1, maximum=30, value=28, step=1 ) with gr.Accordion("R2 Settings", open=False): upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False) with gr.Row(): account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id", value="") bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here", value="") with gr.Row(): access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here", value="") secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here", value="") with gr.Column(): output_json_component = gr.Code(label="JSON Result", language="json", value="{}") run_button.click( fn=process, inputs=[ image_url, prompt, seed, randomize_seed, guidance_scale, steps, upload_to_r2, account_id, access_key, secret_key, bucket ], outputs = [ output_json_component ], api_name="predict" ) demo.queue(api_open=True) demo.launch(share=True)