Spaces:
Sleeping
Sleeping
File size: 8,550 Bytes
72bb838 8b2e3f4 72bb838 a436cb2 72bb838 29660cb 72bb838 29660cb 72bb838 29660cb 72bb838 29660cb 72bb838 29660cb 72bb838 0a058d3 72bb838 0a058d3 72bb838 0a058d3 72bb838 cc57f41 72bb838 0a058d3 72bb838 6ee534d 72bb838 6ee534d 72bb838 29660cb 72bb838 6ee534d 72bb838 6ee534d 72bb838 6ee534d 72bb838 29660cb 72bb838 5b00254 72bb838 0a058d3 72bb838 0a058d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from typing import Tuple, Optional
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
import json
import boto3
from io import BytesIO
from datetime import datetime
from huggingface_hub import login
import os
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from diffusers.utils import load_image, make_image_grid
from datetime import datetime
import time
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
@spaces.GPU
def infer(
input_image,
prompt,
seed,
randomize_seed,
guidance_scale,
steps,
progress
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image:
draft_image = input_image.convert("RGB")
image = pipe(
image=draft_image,
prompt=prompt,
guidance_scale=guidance_scale,
width = draft_image.size[0],
height = draft_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
else:
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image
def process(image_url, prompt, seed, randomize_seed, guidance_scale, steps, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
result = {"status": "false", "message": ""}
input_image = load_image(image_url)
if not isinstance(input_image, Image.Image):
result["status"] = "fail"
result["message"] = "Invalid input image url"
return json.dumps(result)
try:
generated_image = infer(input_image, prompt, seed, randomize_seed, guidance_scale, steps, progress)
except Exception as e:
result["status"] = "faield"
result["message"] = "generate image failed"
generated_image = None
if generated_image:
if upload_to_r2:
url = upload_image_to_r2(generated_image, account_id, access_key, secret_key, bucket)
result = {"status": "success", "message": "upload image success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
progress(100, "finish!")
return json.dumps(result)
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
with calculateDuration("Upload image"):
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
s3 = boto3.client(
's3',
endpoint_url=connectionUrl,
region_name='auto',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_file)
print("upload finish", image_file)
# start to generate thumbnail
thumbnail = image.copy()
thumbnail_width = 256
aspect_ratio = image.height / image.width
thumbnail_height = int(thumbnail_width * aspect_ratio)
thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS)
# Generate the thumbnail image filename
thumbnail_file = image_file.replace(".png", "_thumbnail.png")
# Save thumbnail to buffer and upload
thumbnail_buffer = BytesIO()
thumbnail.save(thumbnail_buffer, "PNG")
thumbnail_buffer.seek(0)
s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file)
print("upload thumbnail finish", thumbnail_file)
return image_file
def dummy(image_url, prompt, seed, randomize_seed, guidance_scale, steps, upload_to_r2, account_id, access_key, secret_key, bucket):
# 返回一张纯黑图和空json,安全无异常
black = Image.new("RGB", (256,256))
return [black], '{"status":"dummy"}'
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(f"# FLUX.1 Kontext [dev]")
with gr.Row():
with gr.Column():
image_url = gr.Textbox(
label="Orginal image url",
show_label=True,
max_lines=1,
placeholder="Enter image url for inpainting",
container=False
)
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
run_button = gr.Button("Run")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
value=28,
step=1
)
with gr.Accordion("R2 Settings", open=False):
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
with gr.Row():
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id", value="")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here", value="")
with gr.Row():
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here", value="")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here", value="")
with gr.Column():
output_json_component = gr.Code(label="JSON Result", language="json", value="{}")
run_button.click(
fn=process,
inputs=[
image_url,
prompt,
seed,
randomize_seed,
guidance_scale,
steps,
upload_to_r2,
account_id,
access_key,
secret_key,
bucket
],
outputs = [
output_json_component
],
api_name="predict"
)
demo.queue(api_open=True)
demo.launch(share=True)
|