File size: 2,548 Bytes
bb2885a
69067ae
d445f81
9a63e27
2c6d73a
 
 
 
 
 
 
 
caba180
2c6d73a
 
 
 
 
 
 
caba180
2c6d73a
 
 
 
 
 
 
caba180
 
 
 
 
 
 
 
 
57090aa
caba180
 
2c6d73a
 
 
fb84286
2c6d73a
 
 
 
 
 
fb84286
 
2c6d73a
 
 
 
 
 
 
 
 
 
 
bb2885a
2c6d73a
 
 
 
 
 
 
 
9a63e27
56becc0
406eb19
9a63e27
2c6d73a
 
 
 
 
ca55819
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
from flask import Flask, render_template, request, jsonify
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from waitress import serve

app = Flask(__name__)

device = "cuda" if torch.cuda.is_available() else "cpu"
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1)

def generate_audio_prompt(text, filename):
    tts = gTTS(text=text, lang="en")
    tts.save(os.path.join("static", filename))

prompts = {
    "welcome": "Welcome to Biryani Hub.",
    "ask_name": "Tell me your name.",
    "ask_email": "Please provide your email address.",
    "thank_you": "Thank you for registration."
}

for key, text in prompts.items():
    generate_audio_prompt(text, f"{key}.mp3")

SYMBOL_MAPPING = {
    "at the rate": "@",
    "at": "@",
    "dot": ".",
    "underscore": "_",
    "hash": "#",
    "plus": "+",
    "dash": "-",
    "comma": ",",
    "space": ""
}

def convert_to_wav(input_path, output_path):
    try:
        audio = AudioSegment.from_file(input_path)
        audio = audio.set_frame_rate(16000).set_channels(1)
        audio.export(output_path, format="wav")
    except Exception as e:
        raise Exception(f"Audio conversion failed: {str(e)}")

def is_silent_audio(audio_path):
    audio = AudioSegment.from_wav(audio_path)
    nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
    return len(nonsilent_parts) == 0

@app.route("/")
def index():
    return render_template("index.html")

@app.route("/transcribe", methods=["POST"])
def transcribe():
    if "audio" not in request.files:
        return jsonify({"error": "No audio file provided"}), 400

    audio_file = request.files["audio"]
    input_audio_path = os.path.join("static", "temp_input.wav")
    output_audio_path = os.path.join("static", "temp.wav")
    audio_file.save(input_audio_path)

    try:
        convert_to_wav(input_audio_path, output_audio_path)

        if is_silent_audio(output_audio_path):
            return jsonify({"error": "No speech detected. Please try again."}), 400

        result = asr_model(output_audio_path, generate_kwargs={"language": "en"})
        transcribed_text = result["text"].strip()

        return jsonify({"text": transcribed_text})
    except Exception as e:
        return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500

if __name__ == "__main__":
    serve(app, host="0.0.0.0", port=7860)