Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,112 @@
|
|
1 |
from flask import Flask, render_template, request, jsonify
|
2 |
import os
|
|
|
|
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import re
|
5 |
import ffmpeg # Ensures FFmpeg is installed
|
6 |
from transformers import pipeline
|
|
|
1 |
from flask import Flask, render_template, request, jsonify
|
2 |
import os
|
3 |
+
import torchafrom flask import Flask, render_template, request, jsonify
|
4 |
+
import os
|
5 |
import torch
|
6 |
+
import re
|
7 |
+
import ffmpeg # Ensure FFmpeg is installed
|
8 |
+
from transformers import pipeline
|
9 |
+
from gtts import gTTS
|
10 |
+
from pydub import AudioSegment
|
11 |
+
from pydub.silence import detect_nonsilent
|
12 |
+
from waitress import serve
|
13 |
+
import whisper # Improved Whisper ASR Model
|
14 |
+
|
15 |
+
app = Flask(__name__)
|
16 |
+
|
17 |
+
# Load Whisper Model for Highly Accurate Speech-to-Text
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
asr_model = whisper.load_model("large-v3", device=device)
|
20 |
+
|
21 |
+
# Function to generate audio prompts
|
22 |
+
def generate_audio_prompt(text, filename):
|
23 |
+
tts = gTTS(text=text, lang="en")
|
24 |
+
tts.save(os.path.join("static", filename))
|
25 |
+
|
26 |
+
# Generate required voice prompts
|
27 |
+
prompts = {
|
28 |
+
"welcome": "Welcome to Biryani Hub.",
|
29 |
+
"ask_name": "Tell me your name.",
|
30 |
+
"ask_email": "Please provide your email address.",
|
31 |
+
"thank_you": "Thank you for registration."
|
32 |
+
}
|
33 |
+
|
34 |
+
for key, text in prompts.items():
|
35 |
+
generate_audio_prompt(text, f"{key}.mp3")
|
36 |
+
|
37 |
+
# Symbol mapping for better recognition
|
38 |
+
SYMBOL_MAPPING = {
|
39 |
+
"at the rate": "@",
|
40 |
+
"at": "@",
|
41 |
+
"dot": ".",
|
42 |
+
"underscore": "_",
|
43 |
+
"hash": "#",
|
44 |
+
"plus": "+",
|
45 |
+
"dash": "-",
|
46 |
+
"comma": ",",
|
47 |
+
"space": " "
|
48 |
+
}
|
49 |
+
|
50 |
+
# Function to convert audio to WAV format (Fixes FFmpeg issues)
|
51 |
+
def convert_to_wav(input_path, output_path):
|
52 |
+
try:
|
53 |
+
audio = AudioSegment.from_file(input_path)
|
54 |
+
audio.export(output_path, format="wav")
|
55 |
+
except Exception as e:
|
56 |
+
raise Exception(f"Audio conversion failed: {str(e)}")
|
57 |
+
|
58 |
+
# Function to clean transcribed text (Removes unnecessary words)
|
59 |
+
def clean_transcription(text):
|
60 |
+
text = text.lower().strip()
|
61 |
+
ignore_phrases = ["my name is", "this is", "i am", "it's", "name"]
|
62 |
+
for phrase in ignore_phrases:
|
63 |
+
text = text.replace(phrase, "").strip()
|
64 |
+
|
65 |
+
for word, symbol in SYMBOL_MAPPING.items():
|
66 |
+
text = text.replace(word, symbol)
|
67 |
+
|
68 |
+
return text.capitalize()
|
69 |
+
|
70 |
+
# Function to check if the audio contains actual speech
|
71 |
+
def is_silent_audio(audio_path):
|
72 |
+
audio = AudioSegment.from_wav(audio_path)
|
73 |
+
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
|
74 |
+
return len(nonsilent_parts) == 0 # Returns True if silence detected
|
75 |
+
|
76 |
+
@app.route("/")
|
77 |
+
def index():
|
78 |
+
return render_template("index.html")
|
79 |
+
|
80 |
+
@app.route("/transcribe", methods=["POST"])
|
81 |
+
def transcribe():
|
82 |
+
if "audio" not in request.files:
|
83 |
+
return jsonify({"error": "No audio file provided"}), 400
|
84 |
+
|
85 |
+
audio_file = request.files["audio"]
|
86 |
+
input_audio_path = os.path.join("static", "temp_input")
|
87 |
+
output_audio_path = os.path.join("static", "temp.wav")
|
88 |
+
audio_file.save(input_audio_path)
|
89 |
+
|
90 |
+
try:
|
91 |
+
# Convert audio to WAV format
|
92 |
+
convert_to_wav(input_audio_path, output_audio_path)
|
93 |
+
|
94 |
+
# Check if the audio contains valid speech
|
95 |
+
if is_silent_audio(output_audio_path):
|
96 |
+
return jsonify({"error": "No speech detected. Please try again."}), 400
|
97 |
+
|
98 |
+
# Transcribe using Whisper
|
99 |
+
result = asr_model.transcribe(output_audio_path, language="en")
|
100 |
+
transcribed_text = clean_transcription(result["text"])
|
101 |
+
|
102 |
+
return jsonify({"text": transcribed_text})
|
103 |
+
except Exception as e:
|
104 |
+
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
|
105 |
+
|
106 |
+
# Use Waitress for Production Server
|
107 |
+
if __name__ == "__main__":
|
108 |
+
serve(app, host="0.0.0.0", port=7860)
|
109 |
+
|
110 |
import re
|
111 |
import ffmpeg # Ensures FFmpeg is installed
|
112 |
from transformers import pipeline
|