Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import torch
|
2 |
from flask import Flask, render_template, request, jsonify
|
3 |
import os
|
4 |
-
import re
|
5 |
from transformers import pipeline
|
6 |
from gtts import gTTS
|
7 |
from pydub import AudioSegment
|
@@ -10,11 +9,11 @@ from waitress import serve
|
|
10 |
|
11 |
app = Flask(__name__)
|
12 |
|
13 |
-
#
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-
|
16 |
|
17 |
-
# Function to generate
|
18 |
def generate_audio_prompt(text, filename):
|
19 |
tts = gTTS(text=text, lang="en")
|
20 |
tts.save(os.path.join("static", filename))
|
@@ -22,7 +21,7 @@ def generate_audio_prompt(text, filename):
|
|
22 |
# Generate required voice prompts
|
23 |
prompts = {
|
24 |
"welcome": "Welcome to Biryani Hub.",
|
25 |
-
"ask_name": "Tell me your
|
26 |
"ask_email": "Please provide your email address.",
|
27 |
"thank_you": "Thank you for registration."
|
28 |
}
|
@@ -30,28 +29,33 @@ prompts = {
|
|
30 |
for key, text in prompts.items():
|
31 |
generate_audio_prompt(text, f"{key}.mp3")
|
32 |
|
33 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def convert_to_wav(input_path, output_path):
|
35 |
try:
|
36 |
audio = AudioSegment.from_file(input_path)
|
37 |
-
audio = audio.set_frame_rate(16000).set_channels(1) #
|
38 |
audio.export(output_path, format="wav")
|
39 |
except Exception as e:
|
40 |
raise Exception(f"Audio conversion failed: {str(e)}")
|
41 |
|
42 |
-
#
|
43 |
def is_silent_audio(audio_path):
|
44 |
audio = AudioSegment.from_wav(audio_path)
|
45 |
-
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
|
46 |
-
return len(nonsilent_parts) == 0
|
47 |
-
|
48 |
-
# β
Clean Transcription Text (Improved Formatting)
|
49 |
-
def clean_transcription(text):
|
50 |
-
text = text.strip()
|
51 |
-
text = re.sub(r"[-.]", "", text) # β
Remove unwanted characters
|
52 |
-
# Fix email structure and common recognition errors
|
53 |
-
text = text.replace(" at the rate ", "@").replace(" dot ", ".")
|
54 |
-
return text.capitalize()
|
55 |
|
56 |
@app.route("/")
|
57 |
def index():
|
@@ -68,21 +72,21 @@ def transcribe():
|
|
68 |
audio_file.save(input_audio_path)
|
69 |
|
70 |
try:
|
71 |
-
#
|
72 |
convert_to_wav(input_audio_path, output_audio_path)
|
73 |
|
74 |
-
#
|
75 |
if is_silent_audio(output_audio_path):
|
76 |
return jsonify({"error": "No speech detected. Please try again."}), 400
|
77 |
|
78 |
-
#
|
79 |
result = asr_model(output_audio_path, generate_kwargs={"language": "en"})
|
80 |
-
transcribed_text =
|
81 |
|
82 |
return jsonify({"text": transcribed_text})
|
83 |
except Exception as e:
|
84 |
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
|
85 |
|
86 |
-
#
|
87 |
if __name__ == "__main__":
|
88 |
serve(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import torch
|
2 |
from flask import Flask, render_template, request, jsonify
|
3 |
import os
|
|
|
4 |
from transformers import pipeline
|
5 |
from gtts import gTTS
|
6 |
from pydub import AudioSegment
|
|
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
|
12 |
+
# Use whisper-small for faster processing and better speed
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1)
|
15 |
|
16 |
+
# Function to generate audio prompts
|
17 |
def generate_audio_prompt(text, filename):
|
18 |
tts = gTTS(text=text, lang="en")
|
19 |
tts.save(os.path.join("static", filename))
|
|
|
21 |
# Generate required voice prompts
|
22 |
prompts = {
|
23 |
"welcome": "Welcome to Biryani Hub.",
|
24 |
+
"ask_name": "Tell me your name.",
|
25 |
"ask_email": "Please provide your email address.",
|
26 |
"thank_you": "Thank you for registration."
|
27 |
}
|
|
|
29 |
for key, text in prompts.items():
|
30 |
generate_audio_prompt(text, f"{key}.mp3")
|
31 |
|
32 |
+
# Symbol mapping for proper recognition
|
33 |
+
SYMBOL_MAPPING = {
|
34 |
+
"at the rate": "@",
|
35 |
+
"at": "@",
|
36 |
+
"dot": ".",
|
37 |
+
"underscore": "_",
|
38 |
+
"hash": "#",
|
39 |
+
"plus": "+",
|
40 |
+
"dash": "-",
|
41 |
+
"comma": ",",
|
42 |
+
"space": " "
|
43 |
+
}
|
44 |
+
|
45 |
+
# Function to convert audio to WAV format
|
46 |
def convert_to_wav(input_path, output_path):
|
47 |
try:
|
48 |
audio = AudioSegment.from_file(input_path)
|
49 |
+
audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono
|
50 |
audio.export(output_path, format="wav")
|
51 |
except Exception as e:
|
52 |
raise Exception(f"Audio conversion failed: {str(e)}")
|
53 |
|
54 |
+
# Function to check if audio contains actual speech
|
55 |
def is_silent_audio(audio_path):
|
56 |
audio = AudioSegment.from_wav(audio_path)
|
57 |
+
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration
|
58 |
+
return len(nonsilent_parts) == 0 # If no speech detected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
@app.route("/")
|
61 |
def index():
|
|
|
72 |
audio_file.save(input_audio_path)
|
73 |
|
74 |
try:
|
75 |
+
# Convert to WAV
|
76 |
convert_to_wav(input_audio_path, output_audio_path)
|
77 |
|
78 |
+
# Check for silence
|
79 |
if is_silent_audio(output_audio_path):
|
80 |
return jsonify({"error": "No speech detected. Please try again."}), 400
|
81 |
|
82 |
+
# Use Whisper ASR model for transcription
|
83 |
result = asr_model(output_audio_path, generate_kwargs={"language": "en"})
|
84 |
+
transcribed_text = result["text"].strip().capitalize()
|
85 |
|
86 |
return jsonify({"text": transcribed_text})
|
87 |
except Exception as e:
|
88 |
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
|
89 |
|
90 |
+
# Start Production Server
|
91 |
if __name__ == "__main__":
|
92 |
serve(app, host="0.0.0.0", port=7860)
|