Spaces:
Runtime error
Runtime error
File size: 6,899 Bytes
69067ae d445f81 2c6d73a 69067ae 2c6d73a 4b54307 3d6f557 0197ed3 adb5e2a d445f81 4b54307 0197ed3 69067ae 4b54307 7494646 4b54307 7494646 7467739 69067ae 7467739 4b54307 7467739 adb5e2a 7467739 685e8d2 3d6f557 78a5c3d e215f5e 78a5c3d 3d6f557 9fcd178 3d6f557 4b54307 3d6f557 78a5c3d 3d6f557 d445f81 5207ead d445f81 4b54307 5207ead a3e60d6 69067ae 7467739 69067ae 7467739 69067ae 7467739 8ab530a 69067ae 9fcd178 8ab530a 7494646 3d6f557 9fcd178 4b54307 9fcd178 5207ead d445f81 4b54307 9fcd178 7467739 d445f81 7467739 7494646 5207ead 0197ed3 4b54307 69067ae 36d7045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
from flask import Flask, render_template, request, jsonify
import os
import torchafrom flask import Flask, render_template, request, jsonify
import os
import torch
import re
import ffmpeg # Ensure FFmpeg is installed
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from waitress import serve
import whisper # Improved Whisper ASR Model
app = Flask(__name__)
# Load Whisper Model for Highly Accurate Speech-to-Text
device = "cuda" if torch.cuda.is_available() else "cpu"
asr_model = whisper.load_model("large-v3", device=device)
# Function to generate audio prompts
def generate_audio_prompt(text, filename):
tts = gTTS(text=text, lang="en")
tts.save(os.path.join("static", filename))
# Generate required voice prompts
prompts = {
"welcome": "Welcome to Biryani Hub.",
"ask_name": "Tell me your name.",
"ask_email": "Please provide your email address.",
"thank_you": "Thank you for registration."
}
for key, text in prompts.items():
generate_audio_prompt(text, f"{key}.mp3")
# Symbol mapping for better recognition
SYMBOL_MAPPING = {
"at the rate": "@",
"at": "@",
"dot": ".",
"underscore": "_",
"hash": "#",
"plus": "+",
"dash": "-",
"comma": ",",
"space": " "
}
# Function to convert audio to WAV format (Fixes FFmpeg issues)
def convert_to_wav(input_path, output_path):
try:
audio = AudioSegment.from_file(input_path)
audio.export(output_path, format="wav")
except Exception as e:
raise Exception(f"Audio conversion failed: {str(e)}")
# Function to clean transcribed text (Removes unnecessary words)
def clean_transcription(text):
text = text.lower().strip()
ignore_phrases = ["my name is", "this is", "i am", "it's", "name"]
for phrase in ignore_phrases:
text = text.replace(phrase, "").strip()
for word, symbol in SYMBOL_MAPPING.items():
text = text.replace(word, symbol)
return text.capitalize()
# Function to check if the audio contains actual speech
def is_silent_audio(audio_path):
audio = AudioSegment.from_wav(audio_path)
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
return len(nonsilent_parts) == 0 # Returns True if silence detected
@app.route("/")
def index():
return render_template("index.html")
@app.route("/transcribe", methods=["POST"])
def transcribe():
if "audio" not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files["audio"]
input_audio_path = os.path.join("static", "temp_input")
output_audio_path = os.path.join("static", "temp.wav")
audio_file.save(input_audio_path)
try:
# Convert audio to WAV format
convert_to_wav(input_audio_path, output_audio_path)
# Check if the audio contains valid speech
if is_silent_audio(output_audio_path):
return jsonify({"error": "No speech detected. Please try again."}), 400
# Transcribe using Whisper
result = asr_model.transcribe(output_audio_path, language="en")
transcribed_text = clean_transcription(result["text"])
return jsonify({"text": transcribed_text})
except Exception as e:
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
# Use Waitress for Production Server
if __name__ == "__main__":
serve(app, host="0.0.0.0", port=7860)
import re
import ffmpeg # Ensures FFmpeg is installed
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from waitress import serve
import whisper_timestamped # Improved Whisper with timestamps
app = Flask(__name__)
# Load Whisper Model for Highly Accurate Speech-to-Text
device = "cuda" if torch.cuda.is_available() else "cpu"
asr_model = whisper_timestamped.load_model("medium", device=device)
# Function to generate audio prompts
def generate_audio_prompt(text, filename):
tts = gTTS(text=text, lang="en")
tts.save(os.path.join("static", filename))
# Generate required voice prompts
prompts = {
"welcome": "Welcome to Biryani Hub.",
"ask_name": "Tell me your name.",
"ask_email": "Please provide your email address.",
"thank_you": "Thank you for registration."
}
for key, text in prompts.items():
generate_audio_prompt(text, f"{key}.mp3")
# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
"at the rate": "@",
"at": "@",
"dot": ".",
"underscore": "_",
"hash": "#",
"plus": "+",
"dash": "-",
"comma": ",",
"space": " "
}
# Function to convert audio to WAV format (Fixes FFmpeg issues)
def convert_to_wav(input_path, output_path):
try:
audio = AudioSegment.from_file(input_path)
audio.export(output_path, format="wav")
except Exception as e:
raise Exception(f"Audio conversion failed: {str(e)}")
# Function to clean transcribed text (Removes unnecessary words)
def clean_transcription(text):
text = text.lower().strip()
ignore_phrases = ["my name is", "this is", "i am", "it's", "name"]
for phrase in ignore_phrases:
text = text.replace(phrase, "").strip()
for word, symbol in SYMBOL_MAPPING.items():
text = text.replace(word, symbol)
return text.capitalize()
# Function to check if the audio contains actual speech
def is_silent_audio(audio_path):
audio = AudioSegment.from_wav(audio_path)
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
return len(nonsilent_parts) == 0 # Returns True if silence detected
@app.route("/")
def index():
return render_template("index.html")
@app.route("/transcribe", methods=["POST"])
def transcribe():
if "audio" not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files["audio"]
input_audio_path = os.path.join("static", "temp_input")
output_audio_path = os.path.join("static", "temp.wav")
audio_file.save(input_audio_path)
try:
# Convert audio to WAV format
convert_to_wav(input_audio_path, output_audio_path)
# Check if the audio contains valid speech
if is_silent_audio(output_audio_path):
return jsonify({"error": "No speech detected. Please try again."}), 400
# Transcribe using Whisper
result = asr_model.transcribe(output_audio_path, language="en")
transcribed_text = clean_transcription(result["text"])
return jsonify({"text": transcribed_text})
except Exception as e:
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
# Use Waitress for Production Server
if __name__ == "__main__":
serve(app, host="0.0.0.0", port=7860) |