Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,26 @@
|
|
1 |
from flask import Flask, render_template, request, jsonify
|
2 |
import os
|
3 |
import torch
|
|
|
4 |
from transformers import pipeline
|
5 |
from gtts import gTTS
|
6 |
-
import re
|
7 |
from pydub import AudioSegment
|
8 |
from pydub.silence import detect_nonsilent
|
9 |
from waitress import serve
|
|
|
10 |
|
11 |
app = Flask(__name__)
|
12 |
|
13 |
-
# Load Whisper Model
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
asr_model =
|
16 |
|
17 |
# Function to generate audio prompts
|
18 |
def generate_audio_prompt(text, filename):
|
19 |
tts = gTTS(text=text, lang="en")
|
20 |
tts.save(os.path.join("static", filename))
|
21 |
|
22 |
-
# Generate
|
23 |
prompts = {
|
24 |
"welcome": "Welcome to Biryani Hub.",
|
25 |
"ask_name": "Tell me your name.",
|
@@ -30,7 +31,7 @@ prompts = {
|
|
30 |
for key, text in prompts.items():
|
31 |
generate_audio_prompt(text, f"{key}.mp3")
|
32 |
|
33 |
-
# Symbol mapping for
|
34 |
SYMBOL_MAPPING = {
|
35 |
"at the rate": "@",
|
36 |
"at": "@",
|
@@ -43,17 +44,25 @@ SYMBOL_MAPPING = {
|
|
43 |
"space": " "
|
44 |
}
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Function to clean and format transcribed text properly
|
47 |
def clean_transcription(text):
|
48 |
text = text.lower().strip()
|
49 |
for word, symbol in SYMBOL_MAPPING.items():
|
50 |
text = text.replace(word, symbol)
|
51 |
-
return text
|
52 |
|
53 |
# Function to check if the audio contains actual speech
|
54 |
def is_silent_audio(audio_path):
|
55 |
audio = AudioSegment.from_wav(audio_path)
|
56 |
-
nonsilent_parts = detect_nonsilent(audio, min_silence_len=
|
57 |
return len(nonsilent_parts) == 0 # Returns True if silence detected
|
58 |
|
59 |
@app.route("/")
|
@@ -70,18 +79,18 @@ def transcribe():
|
|
70 |
audio_file.save(audio_path)
|
71 |
|
72 |
try:
|
73 |
-
# Check if audio contains valid speech
|
74 |
if is_silent_audio(audio_path):
|
75 |
return jsonify({"error": "No speech detected. Please try again."}), 400
|
76 |
|
77 |
-
#
|
78 |
-
result = asr_model(audio_path,
|
79 |
transcribed_text = clean_transcription(result["text"])
|
80 |
|
81 |
return jsonify({"text": transcribed_text})
|
82 |
except Exception as e:
|
83 |
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
|
84 |
|
85 |
-
#
|
86 |
if __name__ == "__main__":
|
87 |
serve(app, host="0.0.0.0", port=7860)
|
|
|
1 |
from flask import Flask, render_template, request, jsonify
|
2 |
import os
|
3 |
import torch
|
4 |
+
import re
|
5 |
from transformers import pipeline
|
6 |
from gtts import gTTS
|
|
|
7 |
from pydub import AudioSegment
|
8 |
from pydub.silence import detect_nonsilent
|
9 |
from waitress import serve
|
10 |
+
import whisper_timestamped # Improved Whisper with timestamps
|
11 |
|
12 |
app = Flask(__name__)
|
13 |
|
14 |
+
# Load Whisper Model for Highly Accurate Speech-to-Text
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
asr_model = whisper_timestamped.load_model("medium", device=device)
|
17 |
|
18 |
# Function to generate audio prompts
|
19 |
def generate_audio_prompt(text, filename):
|
20 |
tts = gTTS(text=text, lang="en")
|
21 |
tts.save(os.path.join("static", filename))
|
22 |
|
23 |
+
# Generate required voice prompts
|
24 |
prompts = {
|
25 |
"welcome": "Welcome to Biryani Hub.",
|
26 |
"ask_name": "Tell me your name.",
|
|
|
31 |
for key, text in prompts.items():
|
32 |
generate_audio_prompt(text, f"{key}.mp3")
|
33 |
|
34 |
+
# Symbol mapping for better recognition
|
35 |
SYMBOL_MAPPING = {
|
36 |
"at the rate": "@",
|
37 |
"at": "@",
|
|
|
44 |
"space": " "
|
45 |
}
|
46 |
|
47 |
+
# Function to extract meaningful words (Removes unnecessary phrases)
|
48 |
+
def extract_meaningful_text(text):
|
49 |
+
text = text.lower().strip()
|
50 |
+
ignore_phrases = ["my name is", "this is", "i am", "it's", "name"]
|
51 |
+
for phrase in ignore_phrases:
|
52 |
+
text = text.replace(phrase, "").strip()
|
53 |
+
return text.capitalize()
|
54 |
+
|
55 |
# Function to clean and format transcribed text properly
|
56 |
def clean_transcription(text):
|
57 |
text = text.lower().strip()
|
58 |
for word, symbol in SYMBOL_MAPPING.items():
|
59 |
text = text.replace(word, symbol)
|
60 |
+
return extract_meaningful_text(text)
|
61 |
|
62 |
# Function to check if the audio contains actual speech
|
63 |
def is_silent_audio(audio_path):
|
64 |
audio = AudioSegment.from_wav(audio_path)
|
65 |
+
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
|
66 |
return len(nonsilent_parts) == 0 # Returns True if silence detected
|
67 |
|
68 |
@app.route("/")
|
|
|
79 |
audio_file.save(audio_path)
|
80 |
|
81 |
try:
|
82 |
+
# Check if the audio contains valid speech
|
83 |
if is_silent_audio(audio_path):
|
84 |
return jsonify({"error": "No speech detected. Please try again."}), 400
|
85 |
|
86 |
+
# Transcribe using Whisper
|
87 |
+
result = asr_model.transcribe(audio_path, language="en")
|
88 |
transcribed_text = clean_transcription(result["text"])
|
89 |
|
90 |
return jsonify({"text": transcribed_text})
|
91 |
except Exception as e:
|
92 |
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
|
93 |
|
94 |
+
# Use Waitress for Production Server
|
95 |
if __name__ == "__main__":
|
96 |
serve(app, host="0.0.0.0", port=7860)
|