File size: 2,599 Bytes
59b0f06
 
a2954e9
59b0f06
0f10097
 
 
59b0f06
0f10097
 
 
 
 
 
 
59b0f06
 
0f10097
59b0f06
 
 
0f10097
59b0f06
0f10097
 
 
 
 
59b0f06
0f10097
 
 
59b0f06
 
 
0f10097
59b0f06
 
 
 
0f10097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b0f06
0f10097
59b0f06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import keras
from keras.models import load_model
import gradio as gr
import cv2
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load models
my_model = load_model('models/Final_Chicken_disease_model.h5', compile=True)
auth_model = load_model('models/auth_model.h5', compile=True)
llama_tokenizer = AutoTokenizer.from_pretrained('huggingface/llama3')
llama_model = AutoModelForCausalLM.from_pretrained('huggingface/llama3')

# Dictionaries for disease names, results, and recommendations
name_disease = {0: 'Coccidiosis', 1: 'Healthy', 2: 'New Castle Disease', 3: 'Salmonella'}
result = {0: 'Critical', 1: 'No issue', 2: 'Critical', 3: 'Critical'}
recommend = {0: 'Panadol', 1: 'You have no need of Medicine', 2: 'Paracetamol', 3: 'Ponston'}


def predict(image):
    # Preprocess the image for the authentication model
    image_check = cv2.resize(image, (224, 224))
    image_check = np.expand_dims(image_check, axis=0)  # Add batch dimension
    indx = auth_model.predict(image_check).argmax()

    if indx == 0:  # If the image is recognized as a chicken disease image
        # Preprocess the image for the disease prediction model
        image = cv2.resize(image, (224, 224))
        image = np.expand_dims(image, axis=0)  # Add batch dimension
        indx = my_model.predict(image).argmax()

        name = name_disease.get(indx)
        status = result.get(indx)
        recom = recommend.get(indx)
    else:  # If the image is not recognized as a chicken disease image
        name = 'Unknown Image'
        status = 'N/A'
        recom = 'N/A'

    return f"Chicken is {status}, the disease it has is {name}, the recommended medication is {recom}"


def chat_response(user_input):
    inputs = llama_tokenizer(user_input, return_tensors='pt')
    outputs = llama_model.generate(inputs['input_ids'], max_length=500, do_sample=True)
    response = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response


def combined_interface(image, text):
    if image is not None:
        return predict(image)
    elif text:
        return chat_response(text)
    else:
        return "Please provide an image or ask a question."


# Create Gradio interface
interface = gr.Interface(
    fn=combined_interface,
    inputs=[gr.inputs.Image(label='Upload Image', optional=True),
            gr.inputs.Textbox(label='Ask a question', optional=True)],
    outputs=gr.Textbox(label="Response"),
    examples=[['disease.jpg', ''], ['', 'What should I do if my chicken is sick?']]
)

# Launch the interface
interface.launch(debug=True)