Emmanuel Frimpong Asante
commited on
Commit
·
59b0f06
1
Parent(s):
d73e867
Update space
Browse files- app.py +34 -62
- requirements.txt +4 -1
app.py
CHANGED
@@ -1,63 +1,35 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
import keras
|
2 |
+
from keras.models import load_model
|
3 |
import gradio as gr
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
my_model = load_model('Final_Chicken_disease_model.h5', compile=True)
|
7 |
+
auth_model = load_model('auth_model.h5', compile=True)
|
8 |
+
name_disease = {0: 'Coccidiosis', 1: 'Healthy', 2: 'New Castle Disease', 3: 'Salmonella'}
|
9 |
+
result = {0: 'Critical', 1: 'No issue', 2: 'Critical', 3: 'Critical'}
|
10 |
+
recommend = {0: 'Panadol', 1: 'You have no need of Medicine', 2: 'Percetamol', 3: 'Ponston'}
|
11 |
+
|
12 |
+
|
13 |
+
def predict(image):
|
14 |
+
image_check = cv2.resize(image, (224, 224))
|
15 |
+
indx = auth_model.predict(image_check.reshape(1, 224, 224, 3)).argmax()
|
16 |
+
if indx == 0:
|
17 |
+
image = cv2.resize(image, (224, 224))
|
18 |
+
indx = my_model.predict(image.reshape(1, 224, 224, 3)).argmax()
|
19 |
+
name = name_disease.get(indx)
|
20 |
+
status = result.get(indx)
|
21 |
+
recom = recommend.get(indx)
|
22 |
+
return name, status, recom
|
23 |
+
else:
|
24 |
+
name = 'Unknown Image'
|
25 |
+
status = 'N/A'
|
26 |
+
recom = 'N/A'
|
27 |
+
return name, status, recom
|
28 |
+
|
29 |
+
|
30 |
+
interface = gr.Interface(fn=predict, inputs=[gr.Image(label='upload Image')],
|
31 |
+
outputs=[gr.components.Textbox(label="Disease Name"),
|
32 |
+
gr.components.Textbox(label="result"),
|
33 |
+
gr.components.Textbox(label='Medicine Recommend')],
|
34 |
+
examples=[['disease.jpg'], ['ncd.jpg']])
|
35 |
+
interface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
keras
|
3 |
+
gradio
|
4 |
+
cv2
|