Emmanuel Frimpong Asante commited on
Commit
59b0f06
·
1 Parent(s): d73e867

Update space

Browse files
Files changed (2) hide show
  1. app.py +34 -62
  2. requirements.txt +4 -1
app.py CHANGED
@@ -1,63 +1,35 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import keras
2
+ from keras.models import load_model
3
  import gradio as gr
4
+ import cv2
5
+
6
+ my_model = load_model('Final_Chicken_disease_model.h5', compile=True)
7
+ auth_model = load_model('auth_model.h5', compile=True)
8
+ name_disease = {0: 'Coccidiosis', 1: 'Healthy', 2: 'New Castle Disease', 3: 'Salmonella'}
9
+ result = {0: 'Critical', 1: 'No issue', 2: 'Critical', 3: 'Critical'}
10
+ recommend = {0: 'Panadol', 1: 'You have no need of Medicine', 2: 'Percetamol', 3: 'Ponston'}
11
+
12
+
13
+ def predict(image):
14
+ image_check = cv2.resize(image, (224, 224))
15
+ indx = auth_model.predict(image_check.reshape(1, 224, 224, 3)).argmax()
16
+ if indx == 0:
17
+ image = cv2.resize(image, (224, 224))
18
+ indx = my_model.predict(image.reshape(1, 224, 224, 3)).argmax()
19
+ name = name_disease.get(indx)
20
+ status = result.get(indx)
21
+ recom = recommend.get(indx)
22
+ return name, status, recom
23
+ else:
24
+ name = 'Unknown Image'
25
+ status = 'N/A'
26
+ recom = 'N/A'
27
+ return name, status, recom
28
+
29
+
30
+ interface = gr.Interface(fn=predict, inputs=[gr.Image(label='upload Image')],
31
+ outputs=[gr.components.Textbox(label="Disease Name"),
32
+ gr.components.Textbox(label="result"),
33
+ gr.components.Textbox(label='Medicine Recommend')],
34
+ examples=[['disease.jpg'], ['ncd.jpg']])
35
+ interface.launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.22.2
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ keras
3
+ gradio
4
+ cv2