Emmanuel Frimpong Asante
commited on
Commit
·
0f10097
1
Parent(s):
c3920ae
Update space
Browse files- app.py +49 -14
- requirements.txt +2 -1
app.py
CHANGED
@@ -2,34 +2,69 @@ import keras
|
|
2 |
from keras.models import load_model
|
3 |
import gradio as gr
|
4 |
import cv2
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
name_disease = {0: 'Coccidiosis', 1: 'Healthy', 2: 'New Castle Disease', 3: 'Salmonella'}
|
9 |
result = {0: 'Critical', 1: 'No issue', 2: 'Critical', 3: 'Critical'}
|
10 |
-
recommend = {0: 'Panadol', 1: 'You have no need of Medicine', 2: '
|
11 |
|
12 |
|
13 |
def predict(image):
|
|
|
14 |
image_check = cv2.resize(image, (224, 224))
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
image = cv2.resize(image, (224, 224))
|
18 |
-
|
|
|
|
|
19 |
name = name_disease.get(indx)
|
20 |
status = result.get(indx)
|
21 |
recom = recommend.get(indx)
|
22 |
-
|
23 |
-
else:
|
24 |
name = 'Unknown Image'
|
25 |
status = 'N/A'
|
26 |
recom = 'N/A'
|
27 |
-
return name, status, recom
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
outputs=[gr.components.Textbox(label="Disease Name"),
|
32 |
-
gr.components.Textbox(label="result"),
|
33 |
-
gr.components.Textbox(label='Medicine Recommend')],
|
34 |
-
examples=[['disease.jpg'], ['ncd.jpg']])
|
35 |
interface.launch(debug=True)
|
|
|
2 |
from keras.models import load_model
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
import torch
|
8 |
|
9 |
+
# Load models
|
10 |
+
my_model = load_model('models/Final_Chicken_disease_model.h5', compile=True)
|
11 |
+
auth_model = load_model('models/auth_model.h5', compile=True)
|
12 |
+
llama_tokenizer = AutoTokenizer.from_pretrained('huggingface/llama3')
|
13 |
+
llama_model = AutoModelForCausalLM.from_pretrained('huggingface/llama3')
|
14 |
+
|
15 |
+
# Dictionaries for disease names, results, and recommendations
|
16 |
name_disease = {0: 'Coccidiosis', 1: 'Healthy', 2: 'New Castle Disease', 3: 'Salmonella'}
|
17 |
result = {0: 'Critical', 1: 'No issue', 2: 'Critical', 3: 'Critical'}
|
18 |
+
recommend = {0: 'Panadol', 1: 'You have no need of Medicine', 2: 'Paracetamol', 3: 'Ponston'}
|
19 |
|
20 |
|
21 |
def predict(image):
|
22 |
+
# Preprocess the image for the authentication model
|
23 |
image_check = cv2.resize(image, (224, 224))
|
24 |
+
image_check = np.expand_dims(image_check, axis=0) # Add batch dimension
|
25 |
+
indx = auth_model.predict(image_check).argmax()
|
26 |
+
|
27 |
+
if indx == 0: # If the image is recognized as a chicken disease image
|
28 |
+
# Preprocess the image for the disease prediction model
|
29 |
image = cv2.resize(image, (224, 224))
|
30 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
31 |
+
indx = my_model.predict(image).argmax()
|
32 |
+
|
33 |
name = name_disease.get(indx)
|
34 |
status = result.get(indx)
|
35 |
recom = recommend.get(indx)
|
36 |
+
else: # If the image is not recognized as a chicken disease image
|
|
|
37 |
name = 'Unknown Image'
|
38 |
status = 'N/A'
|
39 |
recom = 'N/A'
|
|
|
40 |
|
41 |
+
return f"Chicken is {status}, the disease it has is {name}, the recommended medication is {recom}"
|
42 |
+
|
43 |
+
|
44 |
+
def chat_response(user_input):
|
45 |
+
inputs = llama_tokenizer(user_input, return_tensors='pt')
|
46 |
+
outputs = llama_model.generate(inputs['input_ids'], max_length=500, do_sample=True)
|
47 |
+
response = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
+
return response
|
49 |
+
|
50 |
+
|
51 |
+
def combined_interface(image, text):
|
52 |
+
if image is not None:
|
53 |
+
return predict(image)
|
54 |
+
elif text:
|
55 |
+
return chat_response(text)
|
56 |
+
else:
|
57 |
+
return "Please provide an image or ask a question."
|
58 |
+
|
59 |
+
|
60 |
+
# Create Gradio interface
|
61 |
+
interface = gr.Interface(
|
62 |
+
fn=combined_interface,
|
63 |
+
inputs=[gr.inputs.Image(label='Upload Image', optional=True),
|
64 |
+
gr.inputs.Textbox(label='Ask a question', optional=True)],
|
65 |
+
outputs=gr.Textbox(label="Response"),
|
66 |
+
examples=[['disease.jpg', ''], ['', 'What should I do if my chicken is sick?']]
|
67 |
+
)
|
68 |
|
69 |
+
# Launch the interface
|
|
|
|
|
|
|
|
|
70 |
interface.launch(debug=True)
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ huggingface_hub==0.22.2
|
|
2 |
keras
|
3 |
gradio
|
4 |
opencv-python
|
5 |
-
tensorflow==2.12.0
|
|
|
|
2 |
keras
|
3 |
gradio
|
4 |
opencv-python
|
5 |
+
tensorflow==2.12.0
|
6 |
+
transformers
|