Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
from aif360.datasets import StandardDataset | |
default_mappings = { | |
'label_maps': [{1.0: 'Good Credit', 2.0: 'Bad Credit'}], | |
'protected_attribute_maps': [{1.0: 'Male', 0.0: 'Female'}, | |
{1.0: 'Old', 0.0: 'Young'}], | |
} | |
def default_preprocessing(df): | |
"""Adds a derived sex attribute based on personal_status.""" | |
# TODO: ignores the value of privileged_classes for 'sex' | |
status_map = {'A91': 'male', 'A93': 'male', 'A94': 'male', | |
'A92': 'female', 'A95': 'female'} | |
df['sex'] = df['personal_status'].replace(status_map) | |
return df | |
class GermanDataset(StandardDataset): | |
"""German credit Dataset. | |
See :file:`aif360/data/raw/german/README.md`. | |
""" | |
def __init__(self, label_name='credit', favorable_classes=[1], | |
protected_attribute_names=['sex', 'age'], | |
privileged_classes=[['male'], lambda x: x > 25], | |
instance_weights_name=None, | |
categorical_features=['status', 'credit_history', 'purpose', | |
'savings', 'employment', 'other_debtors', 'property', | |
'installment_plans', 'housing', 'skill_level', 'telephone', | |
'foreign_worker'], | |
features_to_keep=[], features_to_drop=['personal_status'], | |
na_values=[], custom_preprocessing=default_preprocessing, | |
metadata=default_mappings): | |
"""See :obj:`StandardDataset` for a description of the arguments. | |
By default, this code converts the 'age' attribute to a binary value | |
where privileged is `age > 25` and unprivileged is `age <= 25` as | |
proposed by Kamiran and Calders [1]_. | |
References: | |
.. [1] F. Kamiran and T. Calders, "Classifying without | |
discriminating," 2nd International Conference on Computer, | |
Control and Communication, 2009. | |
Examples: | |
In some cases, it may be useful to keep track of a mapping from | |
`float -> str` for protected attributes and/or labels. If our use | |
case differs from the default, we can modify the mapping stored in | |
`metadata`: | |
>>> label_map = {1.0: 'Good Credit', 0.0: 'Bad Credit'} | |
>>> protected_attribute_maps = [{1.0: 'Male', 0.0: 'Female'}] | |
>>> gd = GermanDataset(protected_attribute_names=['sex'], | |
... privileged_classes=[['male']], metadata={'label_map': label_map, | |
... 'protected_attribute_maps': protected_attribute_maps}) | |
Now this information will stay attached to the dataset and can be | |
used for more descriptive visualizations. | |
""" | |
filepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), | |
'..', 'data', 'raw', 'german', 'german.data') | |
# as given by german.doc | |
column_names = ['status', 'month', 'credit_history', | |
'purpose', 'credit_amount', 'savings', 'employment', | |
'investment_as_income_percentage', 'personal_status', | |
'other_debtors', 'residence_since', 'property', 'age', | |
'installment_plans', 'housing', 'number_of_credits', | |
'skill_level', 'people_liable_for', 'telephone', | |
'foreign_worker', 'credit'] | |
try: | |
df = pd.read_csv(filepath, sep=' ', header=None, names=column_names, | |
na_values=na_values) | |
except IOError as err: | |
print("IOError: {}".format(err)) | |
print("To use this class, please download the following files:") | |
print("\n\thttps://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data") | |
print("\thttps://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.doc") | |
print("\nand place them, as-is, in the folder:") | |
print("\n\t{}\n".format(os.path.abspath(os.path.join( | |
os.path.abspath(__file__), '..', '..', 'data', 'raw', 'german')))) | |
import sys | |
sys.exit(1) | |
super(GermanDataset, self).__init__(df=df, label_name=label_name, | |
favorable_classes=favorable_classes, | |
protected_attribute_names=protected_attribute_names, | |
privileged_classes=privileged_classes, | |
instance_weights_name=instance_weights_name, | |
categorical_features=categorical_features, | |
features_to_keep=features_to_keep, | |
features_to_drop=features_to_drop, na_values=na_values, | |
custom_preprocessing=custom_preprocessing, metadata=metadata) | |